Current State of Ga₂O₃-Based Electronic and Optoelectronic Devices. Brief Review

A. A. Petrenko¹, Ya. N. Kovach¹, D. A. Bauman¹, M. A. Odnoblyudov^{1,2}, V. E. Bougrov¹ and A. E. Romanov^{1,3}

¹Institute of Advanced Data Transfer Systems, ITMO University, Kronverksky Pr. 49, bldg. A, St. Petersburg, 197101, Russia

²Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russia ³Ioffe Physical-Technical Institute, Russian Academy of Sciences, Polytechnicheskaya 26, St. Petersburg, 194021, Russia

Tome r nysicai- recimical institute, Kussian Academy of Sciences, rotytechnicheskaya 20, St. reter

Received: April 07, 2021

Abstract. In this review, we consider the main gallium oxide areas of application in electronics and optoelectronics with focus on power electronics devices (rectifiers, field effect transistors), solar-blind photodetectors, luminescent devices, gas sensors, spintronic and memory devices. As an introduction, we provide the valuable data on the basic physical properties of the existing Ga_2O_3 polymorphic modifications. We discuss device design based on various gallium oxide crystalline forms including those exploring Ga_2O_3 single crystals, thick layers, thin films, nanostructures, and Ga_2O_3 -based heterostructures. Then, the information on the parameters and characteristics of electronic and optoelectronic devices based on gallium oxide is presented. In addition, recently emerging and requiring additional research Ga_2O_3 application fields such as photocatalysis and thermomechanical actuating, are briefly addressed.

1. INTRODUCTION

At the moment, in the practice of optoelectronic devices design, a great number of problems are being solved related to improving their characteristics, weight and dimensions, creating new energy-efficient light-emitting and photovoltaic devices such as light emitting diodes (LEDs), laser diodes (LDs), photodetectors, gas sensors, and memory devices. To create optoelectronic devices for different purposes, a variety of semiconductor materials with band gaps are traditionally used: from narrow-gap semiconductors like InSb (0.17 eV), InAs (0.36 eV), Ge (0.67 eV) with semiconductors with bandgaps near Si (1.12 eV) – InP (1.35 eV), GaAs (1.4 eV)to wide band gap SiC (3.2 eV), GaN (3.4 eV) and ultra wide band gap Ga₂O₂ (4.9 eV), diamond (5.47 eV), AlN (6.28 eV) [1]. In recent years, ultra wide band gap semiconductors (a band gap of more than 4 eV) are especially in demand, because of their potential advantage to increase the operating temperature range, breakdown voltage and radiation resistance. Also the new opportunity of creating ultraviolet and visible spectral range light-emitting and photosensitive devices emerged. Among all ultra wide band gap semiconductors, the most interesting is gallium oxide, which exists in 6 known polymorphic modifications (α , β , γ , δ , ϵ , and κ) [2,3]. Each of the gallium oxide polymorphs has its own unique properties and may be utilized as a material for the various devices manufacturing. In this review, the main attention is paid to the prospects for the application of gallium oxide in the field of optoelectronic devices manufacturing.

2. BASIC PROPERTIES OF Ga₂O₃

Currently 6 gallium oxide phases mentioned above have been described theoretically and experimentally [4–6]. The most popular of all is monoclinic β -Ga₂O₃, because it is stable under normal conditions and can remain stable up to a temperature of 1800 °C [7]. The results of

Corresponding author: A.A. Petrenko, e-mail: aapetrenko@itmo.ru

studying the dielectric constant of β -Ga₂O₃ in planes (100), (010), and (001) are known. The experiment measured values from 25 to 450 K and obtained values for room temperature 10.2 ± 0.2 , 10.87 ± 0.08 , and 12.4 ± 0.4 , respectively. A comparative table of theoretical and experimental values of the dielectric constant is presented in ref. [8]. Unique characteristics combination of wide band gap (4.6-4.9 eV) [9], mobility ($170 \text{ cm}^2/\text{V} \cdot \text{s}$) [10], breakdown field strength (8 MV/cm) [11] makes β -Ga₂O₃ extremely interesting material in power electronics applications.

The research results indicate the possibility of obtaining other polymorphs from gallium beta-oxide with increasing pressure and temperature. So, in ref. [12] it is shown that monoclinic α -Ga₂O₃ can be converted to trigonal β -Ga₂O₃ under cold compression at a pressure of 19.2 GPa. Moreover, such a phase transition is irreversible, and α -Ga₂O₃ itself is the only stable phase of gallium oxide in the high-pressure region [13].

By merging the semiconducting and magnetic properties of α -Ga₂O₃ with metals, a promising spintronic materials were obtained. Thus, Kaneko *et al.* investigated the magnetization hysteresis of α -(Ga_{1-x}Fe_x)₂O₃ above room temperature [14]. An additional advantage of α -Ga₂O₃ is the crystal structure of corundum, similar to sapphire, which makes it possible to improve the quality of the grown epitaxial layers.

Defective cubic spinel-type γ -Ga₂O₃ previously grown by various methods on sapphire substrates are also of interest for utilization in spintronics, since they demonstrate ferromagnetism at room temperatures being Mn-doped [15].

Hexagonal ε -Ga₂O₃ has a band gap of about 4.9 eV (calculated using a direct band gap fitting formula) [16], which is comparable to the band gap of the well-known GaN and SiC [17]. Various authors have shown ferroelectric [18] and pyroelectric properties of the epsilon phase, as well as large spontaneous polarization [19].

The growing interest in the use of gallium oxide in semiconductor devices is associated with a number of its characteristic features, which include: large bandgap (from 4.6 to 4.9 eV depending on the phase), high critical electric field strength (8 MV/cm [13], which is comparable to the results for a much more expensive diamond), the radiation [20], chemical and thermal resistance [9]. Gallium oxide has been identified as a potential material for working with high-power electric fields, despite the fact that the operating frequency of the devices is currently limited to 1 GHz [21]. It is often mentioned the existence of not 6, but 4 gallium oxide polymorphs, combining ε -, δ - and κ -phase into one group, since the ε -phase probably imitates the κ -phase due to the rotat-

ing grains formed on the sapphire, cubic δ -phase are traditionally considering as a mixture of the β - and ϵ -phases [22].

Detailed description of various polymorphs characteristics, as well as the technologies for their preparation are presented in the reviews [9,21,22].

3. GAS SENSORS

Gallium oxide attracted much attention in extensively advancing applications in detector systems such as gas sensors. Previously experimentally reported results of detecting wide range of gases utilizing gallium oxide based devices: oxygen, hydrogen, carbon monoxide, nitrogen dioxide, triethylamine, hydrogen sulfide, sulfur dioxide, ammonia.

There are references to several fundamental approaches to the creation of various oxygen detectors based on Ga₂O₂. The annealing of the gallium oxide film [23] transform the grain size and surface quality, which leads to a change in the O₂ detection properties. So, at a higher temperature and duration of annealing, the response time decreases. Bartic et al. in ref. [24] also showed that the sensitivity of the detector does not depend on the pad types. Ogita et al. obtained a similar result in ref. [25], where, during magnetic sputtering of the film, a relationship between the gas pressure during deposition with the film conductivity and sensitivity to O_2 was found, along with the detector's response time. Baban et al. examined a sensor resistance change to different concentration of oxygen in gas mixture (Fig. 1) [26]. Li et al. in ref. [27] examined the ability to detect oxygen by Ga₂O₂ detectors with Ce, W and Zn impurities, the presence of which reduced the basic resistance and the operating temperature of the detector.

Fig. 1. Resistance change to different concentrations of oxygen in the O_2/N_2 mixture with a total flowing rate of 1 l/min, adapted from [26].

Fig. 2. The schematic of core/shell nanowires structure, adapted from [32].

Although the largest number of results has been shown for oxygen detectors, studies of the other gases sensors characteristics are known. Trinchi et al. in ref. [28] designed an H₂ sensitive Pt / Ga₂O₃ / SiC Schottky diode. The sensitivity of such a detector to small fractions of hydrogen (up to 0.06%) in synthetic air and pure N₂ atmospheres with 5% O₂ was shown. The detector relaxation time was also observed to decrease by a factor of 4 with an increase in temperature from 210 °C to 630 °C. The investigation results was reported of a hydrogen detector with high selectivity at an operating temperature of 700 °C [29]. This selectivity was achieved by sputtering a thin SiO₂ film on gallium oxide. In the presence of such a film, the sensitivity to gases with reducing properties is strongly suppressed, except for ethanol and acetone, for which the sensitivity is 10 and 4 times lower, respectively. It is shown that SnO_2 is a good material for doping gallium oxide films, which increases its conductivity by two orders of magnitude and, consequently, the sensitivity of the gas detector. Increased conductivity allows to reduce the size of the detector.

The modification of gallium oxide by inclusions of reduced graphene oxide discussed in ref. [30]. Such modification leads to a greater sensitivity to H₂S, relative to NH_3 , SO_2 , CO_2 and CO - at a concentration of 3ppm, the sensitivity to H_2S is ~ 2 times higher compared to other reduced gases. The created detector is capable to operate at a temperature of 100 °C. It was also shown that the presence of H₂S gas strongly changes the ohmic resistance of the Ga₂O₃ grain boundaries. In order to increase devices environmental friendliness Pohle et al. in ref. [31] demonstrated a power consumption reduction from 900 mW, corresponding to ceramic analogs, to 20 mW for the developed gas detector microelectromechanical system (MEMS). The detector has also been modified by applying porous ceramics to the sensing element so increase in the CO and hydrocarbons sensitivity is achieved. Thus, resistivity ratio

 R_0/R_{gas} for ethanol concentration of 30 ppm was 20 and for 100 ppm was 45.

The increase in the CO and hydrocarbons sensitivity has been achieved due to sensing element modification by using porous ceramics.

In the future, it will be possible to utilize one-dimensional structures in gas detectors, such as nanorods or nanowires. So, Bui et al. in ref. [32] considered the synthesis of GaN / Ga2O3 core / shell nanowires with different thicknesses of the formed oxide film from 1 to 14 nm (Fig. 2). Wires utilization allows to increase the detector's CO sensitivity, response time and spatial resolution. The main advantage of one-dimensional structures is a larger surface area to volume ratio. Their size is commensurate with gas molecules, which makes it possible to create nano-detectors. Also, one-dimensional structures have the best mechanical properties: flexibility, reliability and resistance to mechanical stress. Liu et al. in ref. [33] designed a detector of O₂ and CO on Ga₂O₃ nanowires operating at temperatures of 100-500 °C. The peak sensitivity of oxygen is observed at a temperature of 300 °C, carbon monoxide - 200 °C. The detector selectivity was found only for CO sensitivity to which is 4 times larger than other gases with reducing properties. At the same time Jin et al. in ref. [34] investigated NO₂ detection by a Ga₂O₃-ZnO core / shell based sensor. The resulting nanorods showed a sensitivity 355 times higher than for Ga₂O₂ nanorods without a shell at a temperature of 300 °C and a concentration of 100 ppm. Mazeina et al. in ref. [35] reported the first capacitive gas detector based on Ga2O3 nanowire. Moreover, the surface of the nanowires was modified with pyruvic acid, the absorption of which reduces the detector's sensitivity to nitromethane and acetone (by 5 and 10 times, respectively), but increases the sensitivity to triethylamine by an order of magnitude. Capacity relation C_0/C_{gas} of modified and initial nanowires were 3-10⁻³ and 210^{-4} respectively. It is noteworthy that Ga₂O₃ wires can be returned to their original state before exposure to pyruvic acid by washing in water or heating.

Thus, Ga_2O_3 thin films and one-dimensional structures can be utilized to create sensors for both oxygen and other gases with high stability. High temperature stability was achieved in several gas detector implementations [28,29,33,34] making sensors based on Ga_2O_3 available for use in industrial furnaces or internal combustion engine. A detailed comparison of the gallium oxide gas sensors characteristics is presented in ref. [36].

4. LUMINESCENT DEVICES

In recent years, the possibility of gallium oxide utilizing in order to create displays and fluorescent lamps has been actively examined. The various dopants utilization makes it possible to achieve emission in a different spectral range, and Ga_2O_3 high electric field strength allows to apply high electric fields to Ga_2O_3 -based luminescent devices. To date, the results of the gallium oxide with various dopants luminescence spectra investigations and the results of the phosphorous characteristics studying have been obtained, however, the finished emitting devices have not yet been reported.

Frodason *et al.* in ref. [37] calculated the gallium oxide luminescence lines and optical transition energies for acceptor dopants: Mg, Be, Ca, Cd, Zn, Li, and N. Thus, the lines for Mg, Ca, Cd and Zn have a maximum in the range 2.15-2.62 eV (green / blue), when for Be and Li the peaks are in the region of lower energies - 1.71 and 1.56 eV (IR / red), respectively. It was also found that when the acceptor has a bond with one H, the luminescence band is not passivated, but the intensity peak is shifted.

Excited by X-rays luminescence of β -Ga₂O₃ and its temperature dependence was investigated by Tang *et al.* in ref. [38]. The recombination of free electrons and self-trapped holes (STHs) was found responsible for luminescence in the ultraviolet range. The results of the samples transmission spectrum measurements showed that the electron concentration decreases. This can be attributed to an increase in the number of gallium vacancies upon annealing in an atmosphere with a high oxygen concentration. The authors also question the ntype conductivity of gallium oxide: the version that oxygen vacancies are responsible for this type of conductivity is not confirmed, since the calculated ionization energy exceeding 1 eV cannot contribute to the n-type conductivity.

Yu *et al.* in ref. [39] studied the effect of $Ta:\beta$ - Ga_2O_3 crystal transmission increment after annealing. The carriers concentration and the band gap after annealing in an air atmosphere decrease, while after annealing in a nitrogen atmosphere, on the contrary, they increase. Additionally, after annealing in air, the intensity of the blue and ultraviolet lines enhanced.

Huynh *et al.* in ref. [40] discussed in detail the effect of red luminescence in hydrogen doped gallium oxide. Inclusion of hydrogen in the β -Ga₂O₃ structure decreases layer resistance from $10^{10} \Omega/\text{sq}$ to $4 \cdot 10^8 \Omega/\text{sq}$ at 300 K. A high-valence gallium oxide with a binding energy 533.4 eV if hydrogen doping is present, H-radicals are absorbed in β -Ga₂O₃ and form strong bonds with oxygen atoms. Cathodoluminescence examination of the sample led to the red line at 1.9 eV.

Luchechko *et al.* in ref. [41] reported the results of temperature-stimulated luminescence and conductivity study of β -Ga₂O₃ crystals. During the work, three peaks were found at low temperatures: 116, 147, and 165 K.

The trap levels depths for these temperatures are, respectively, 0.15, 0.2, and 0.3 eV. These levels were attributed to the presence of interstitial gallium atoms. At high temperatures, 3 peaks were also found - 354, 385, and 430 K with the corresponding energies of 0.84, 1.0, 1.1 eV, which associated with the activation energy of oxygen vacancies.

Polyakov *et al.* in ref. [42] studied the electrical properties and luminescence in a bulk $\text{Fe}:\beta\text{-Ga}_2\text{O}_3$ crystal. During the work two lines of 1.78 and 1.8 eV were registered for the first time, and were attributed to the 'spinflip' transition in Fe^{3+} . The band gap of about 850 nm (1.46 eV) is too large to an intracenter transition so its nature is not yet completely clear: either strong relaxation of the lattice or donor-acceptor recombination are probable.

Latter Polyakov *et al.* in ref. [43] also investigated analogous properties in the Mg: β -Ga₂O₃ Czochralskigrown crystal. The activation energy for the hole trap associated with Mg was determined - 1.05 eV. The multicathodoluminescence spectrum showed the presence of energies of 3.1, 2.81 and 2.56 eV.

The luminescence of glasses and glass ceramics MgO-Ga₂O₃-SiO₂ doped with Mn²⁺ / Eu²⁺ / Er³⁺ was examined in ref. [44]. Peaks corresponding to the excitation of the dopant atoms were found during the luminescence study of the samples obtained by the sol-gel method. A two-photon process was also detected for samples with Er³⁺. Energy transfer from europium ions to manganese is observed for the sample which contains these two ions. With an increase in the concentration of the Eu^{2+} , this effect is enhanced. Ueda *et al.* in ref. [45] examined orange luminescence and photodarkening, which depend on paramagnetic effects in undoped CaO Ga2O3-GeO2 glass. The orange luminescence was associated with recombination between two defects in the glass: a nonbridging oxygen hole center and an unpaired electron at Ge ion bonding three oxygen. When a sample is irradiated with 290 nm at a temperature of 200 K, a shallow trap is efficiently generated. For 400 K, the wavelength for the shallow trap generation was 260 nm.

Jiang *et al.* in ref. [46] investigated one-dimensional structures of Ga_2O_3 doped with Li. The spectrum shift towards short wavelengths for obtained sample was found. Also, a highly intense red luminescence line centered at 692 nm is present for this sample (Fig. 3). Jiang *et al.* in ref. [47] synthesized and studied Zn-doped Ga_2O_3 nanostructures. The photoluminescence spectrum of the doped sample is shifted to longer wavelengths (Fig. 4). Doping with zinc to a certain level increases the luminescence intensity; however, when the threshold value is reached, the intensity declines strongly, which is associated with a decrease in the

Fig. 3. The PL spectrum of the Li-doped and "undoped" Ga_2O_3 1D nanostructures at room temperature, adapted from [46].

Fig. 4. Deconvoluted PL spectrum of the Zn-doped Ga_2O_3 nanostructure using Gaussian function, adapted from [47].

structure crystallinity and rise in the number of oxygen vacancies.

Thus, a large number of results reported for Ga_2O_3 multicolor emission in visible and IR range with different dopants. IR, red and yellow emission obtained for Be, Li, Cr, Co, Sm, Tm, Ce, Sn activated Ga_2O_3 , green and blue – Mn, Tb, Er, Ho, Dy.

5. SCHOTTKY BARRIER DIODES

Schottky barrier diodes (SBD) attracted much attention as rectifying and switching devices due to fast reverse recovery and low forward voltage drop. Unique gallium oxide wide bandgap and high breakdown voltage provides SBD manufacturing to meet the modern high power electronics needs. Thus, the breakdown field of $Ga_2O_3 \ 8 \ MV/cm$ exceeds these values of 4H-SiC and $GaN - 2.5 \ and 3.3 \ MV/cm$ consequently. However, diamond surpasses $Ga_2O_3 - 10 \ MV/cm$, but today maximum

Fig. 5. Schematic vertical Ni/Au Schottky rectifier structure with edge-termination, adapted from [48].

diamond substrate size is about 20 mm when Ga_2O_3 4inch substrates are already available. Developing areas in SBD manufacturing are temperature stability increasing, modernizing devices characteristics on nanostructures and nanomembranes, investigating the Schottky barriers parameters with various contacts. Schematic vertical Ni/Au Schottky rectifier structure [48] is presented in Fig. 5.

Hou *et al.* in ref. [49] fabricated a IrO_{y} / β -Ga₂O₃ Schottky contact, which demonstrates high temperature stability from 24 to 350 °C, while maintaining a low leakage current value - 5 · 10-9 at 350 °C and -3V and a high rectification factor of about 1010. Schottky barrier height and the ideality factor was 2.05 eV and 1.05, respectively. The thickness of the iridium oxide film obtained by magnetron sputtering was 35 nm. It was noted that during the first heating, the Schottky barrier height increases, and the ideality factor shows opposite dynamic. After cooling these characteristics remain at the same level as at 350 °C. This was explained by an increased work function during the oxidation of iridium oxide, and also, probably, an improvement in the ohmic contact of the diode. Swinnich et al. in ref. [50] reported flexible Schottky diodes on a plastic substrate (polymide) using β -Ga₂O₃ nanomembranes. The obtained nanomembranes have a similar band gap, but different energy of electron affinity and Raman characteristics in comparison with bulk β -Ga₂O₃ crystal. Diodes obtained by micro transfer printing technique demonstrate a record breakdown voltage of 1.2 MV/cm without elastic stress and 1.07 MV/cm in bending. A Schottky diode on a SiO substrate has a breakdown voltage higher than polymide substrate diode: -136 V and -119 V, respectively. Electrical characteristics deterioration can be attributed to cracks in the crystal structure, which appeared as a result of bending. Original characteristics restoration is possible with low-temperature annealing. Sasaki et al. in ref. [51] pioneered the fluted metal-oxide-semiconductor (MOS) Schottky diode (Fig. 6). A Si-doped Ga₂O₃ layer on a Sn-doped β -Ga₂O₂ substrate was grown by chloride – hydride gas-phase epitaxy with an HfO₂ dielectric film. The breakdown voltage for the resulting

Fig. 6. First demonstration of trench MOS-type Schottky diode, adapted from [51].

structure was 240 V. The ideality factor and the Schottky barrier height were 1.1 and 1.07 eV, respectively. The resulting device has a reverse-biased leakage current several orders of magnitude less than that of a conventional diode without trenches. Harada et al. in ref. [52] implemented a Schottky diode on the PdCoO₂/ β -Ga₂O₂ contact, with a barrier height of 1.8 eV. The I_{on}/I_{off} ratio is over 108 even at 350 °C. A PdCoO₂ layer 20 nm thick was obtained by pulsed laser deposition. The created diode is ideal for use in harsh environments due to its stability at high temperatures (up to 800 °C), resistance to chemicals (acids/bases, pH from 0 to 14) and mechanical stress. Huang et al. in ref. [53] developed a Schottky diode with trenches with pre-optimized corner radii. The simulation results show that the breakdown voltage up to a certain moment increases with an increase in the trench corner radius and its length. Various dielectric materials influence was also investigated: Al₂O₂, HfO₂, and SiO₂. When using the first two, the breakdown voltage is 3.49 kV which surpasses most of the known results, when SiO₂ reduces this value by more than 2 times. Müller et al. in ref. [54] obtained high quality Schottky diodes on SiO₂ glass substrates. For growth temperatures below 510 °C, the obtained β -Ga₂O₂ films are amorphous and do not conduct electric current. For temperatures above 510 °C, the films become polycrystalline and conductive. The gallium oxide buffer layer obtained at 20! and annealed at 1100 °C showed the highest conductivity of 890 S/m. Additional heat treatment increases the grain size of the polycrystal, leading to higher conductivity, but also to a greater surface roughness. Thus, the control of the buffer layer electrical characteristics provides additional opportunities when manufacturing devices based on β -Ga₂O₂.

Farzana *et al.* in ref. [55] considered 4 metals as a Schottky contact with β -Ga₂O₃: Pd, Ni, Pt and Au. All Schottky contacts, 8 nm thick, were deposited by electron beam sputtering on commercial gallium oxide substrates. As a result of measuring the diodes *I-V* characteristics, the ideality factor was determined, which is

Fig. 7. Current density-voltage characteristics of 200 μ m diameter Ga₂O₃ based rectifiers fabricated with Ni/Au and W/Au as Schottky metal contact, adapted from [57].

Fig. 8. Cross-section of the vertical Schottky rectifier with W contacts, adapted from [58].

in the range from 1.03 to 1.09. Schottky barrier heights were 1.27 V, 1.54 V, 1.58 V and 1.71 V for used metals, respectively. For Pd, Ni, Pt, excellent diode properties are observed, as described by the thermionic theory. Imperfect Schottky contact was obtained for gold due to uneven film thickness. Jiang et al. in ref. [56] also examined various metals for Schottky contact. The W, Mo, Au, and Ni were deposited onto an n-type β -Ga₂O₂ substrate grown by the Czochralski method. For the diodes under study, the I V characteristics were measured, according to which the barrier height and ideality coefficient were determined, which amounted to 1.38 eV, 1.21 eV, 1.02 eV, 1.00 eV and 1.31, 1.05, 1.23, 1.05 for Au, Ni, W, Mo, respectively. Xian et al. in ref. [57] discussed in detail the effect of annealing W/β -Ga₂O₂ Schottky diodes (Fig. 7), which turned out to be stable at temperatures up to 500 °C. However, for high temperatures (550-600°), the leakage current increased by 2 orders of magnitude. The resulting Schottky W/Au contact showed excellent switching characteristics at a 300 V bias: the current flowing through the diode was 1.2 A, the recovery time – 100 ns. Received device I_{av}/I_{aff} greater than 10⁶ at -100 V bias current. The tungsten and nickel Schottky contacts with β -Ga₂O₃ were compared by Fares et al. in ref. [58]. Simple vertical geometry of Schottky

Fig. 9. Temperature dependence of R_{on} and rectification ratio of the Au/Ni/ β -Ga₂O₃ Schottky diode, adapted from [59].

diode is implemented in the research (Fig. 8). Ga atoms were found to migrate across the contact, slightly decreasing the Schottky barrier height after each heating. The Schottky barrier height for W was 0.97 eV and 0.39 eV at temperatures of 25 and 500 °C, respectively. Tungsten contact turned out to be more stable than nickel at a temperature 500 °C. In the article a comparative table for devices with Ni and W contacts is also provided.

Nickel is the most common contact used to create Schottky contact with gallium oxide, various growth techniques with different substrates and substrate crystallographic planes were discussed in detail. The influence of alfa-radiation and crystal structure defects were also investigated. Thus, Reddy et al. in ref. [59] implemented an Au/Ni/β-Ga₂O₂ Schottky diode (Fig. 9), which showed a strong temperature dependence of the Schottky barrier height and ideality coefficient. Experimental measurements have shown the existence of a double Gaussian distribution of the Schottky barrier heights with a transition at 225 K. The Schottky contact was deposited by electron beam evaporation (EBE) - 30 nm Ni and 250 nm Au. Ideality coefficient, barrier height and rectification coefficient when changing temperature from 100 K to 400 K varied from 2.76 to 1.05; from 0.4 to 1.13 eV; from 3.36 · 10¹⁰ to 1.35 · 10⁷. Jian et al. in ref. [60] showed trench Schottky diodes (Ni/β-Ga₂O₂) obtained by chloride-hydride gas phase epitaxy, which showed an I_{on}/I_{off} ratio of 10⁵ at 650 K, and 10¹⁰ at room temperature. Also, when cooled to room temperature, the I-Vcharacteristic is restored when a similar diode without trenches remains damaged. For a sample with trenches, the breakdown voltage was 1084 V. The high temperature stability of the obtained sample is attributed to the fact that when current flows through the trenches, the degradation of the structure decreases. Li et al. in ref. [61] implemented Ni/ β -Ga₂O₂ Schottky diodes with reverse-biased leakage currents, with the effect of tunneling through the Schottky barrier dominating over the entire breakdown voltages range from 0.8 MV/cm to 3.4 MV/cm. The experimental curves almost perfectly coincide with the calculated dependences according to the thermionic emission model, the value of the ideality coefficient was 1.022. It is also argued that $Ga_2O_3 p-n$ homojunctions are not necessary, since high-quality p*n* heterojunctions with a high built-in potential are excellent for manufacturing power elements. Kasu et al. in ref. [62] investigated the relationship between the defects of a Ni/Au/ β -Ga₂O₂ (01 $\overline{0}$) crystal and the Schottky barrier leakage current. Comparing the leakage current, dislocation density and void etch pit density, it was discovered that not all types of vacancies contribute to the leakage current. The diode leakage current is found to be related with the dislocations: dislocations parallel to [010] act as the directions of the leakage currents in the Schottky diode. Research results also indicate that unintentional Si doping has no effect on the leakage current.

The analogous reseach was held by Kasu et al. in ref. [63] who studied a Ni/Au Schottky diode based on $(201)\beta$ -Ga₂O₂. No clear relationship was found between the linear [010] defect, an arrow-shaped defect pointing in the [102] direction, a pumpkin-shaped defect also pointing in the [102] direction and the diode leakage current. The lack of a clear relationship was explained by the fact that threading dislocations are mainly located along [010] and do not pass through the (201)plane. Despite the dislocation density of Schottky diodes on the (201) plane is higher than that of diodes on the (010) plane, the leakage current of diodes (201) is still less. Oshima et al. in ref. [64] examined a Ni/Au Schottky diode on (001) β-Ga₂O₃: leakage current, ideality factor, and barrier height were considered. The detected linear defects do not change these characteristics, since they rarely go out to the (001) plane, being located along a direction parallel to it [010]. Vertical and horizontal Ni/Au Schottky diodes on β-Ga₂O₂ were studied by Khan et al. in ref. [65]. The horizontal structure can handle higher voltages than the vertical structure, but has a higher series resistance due to the diode geometry. The measured Schottky barrier height was 1.25 eV. The calculated breakdown field was 2.105 V/cm, which is an order of magnitude less than that of existing similar devices. This discrepancy in the values was explained by the low quality of the β -Ga₂O₃ film. Lingaparthi et al. in ref. [66] examined a Ni/Au vertical Schottky diode on β -Ga₂O₃, obtained by chloride-hydride gasphase epitaxy, in which the leakage current at reverse bias was anomalously high. This effect was explained by introducing a thin surface barrier model, due to the high density of oxygen vacancies. Annealing in an N_2/O_2 atmosphere (80:20) lowered the leakage current density by 10^2 and increased the Schottky barrier height from 1.192 eV to 1.452 eV.

The mechanisms of the influence of injected electrons and temperature on the hole mobility in Ni/Au β -Ga₂O₂ Schottky diodes, which were exposed to alpha irradiation, were investigated by Modak et al. in ref. [67]. The electron activation energy for an irradiated sample was 49 meV, while for a sample not exposed to alpha particles it was 74 meV. Upon α -irradiation the recombination centers are formed near the conduction band which decreases activation energy of the sample. It was assumed that oxygen vacancies function as these centers. Konishi et al. in ref. [68] manufactured a Pt/Ti/ Au vertical Schottky diode based on gallium oxide, the breakdown voltage of which exceeds 1 kV. The ideality factor of the device obtained by chloride-hydride gasphase epitaxy was 1.03 at 20-200 °C. The obtained Schottky barrier height exceeds the theoretical value, which is probably due to the presence of fluorine in Ga₂O₂. Lu et al. in ref. [69] investigated Pt/Ti/Au Schottky diodes with increased breakdown voltage and high switching speed. The device with an aperture obtained by ion implantation showed a decrease in the leakage current by 10³ and an increase in the breakdown voltage by a factor of 1.5. Reverse recovery time was 14.1 ns, which is better than a silicon pulse diode (FRD).

The effect of the nitrogen atoms concentration on the β -Ga₂O₂ thin films electrical and structural characteristics was studied by Luan et al. in ref. [70]. With an increase in the nitrogen concentration, the crystal structure degrades, and the formation of a polycrystalline structure is possible. After annealing in an argon atmosphere, the crystal quality is partially restored. The carrier concentration was measured for Ti/Au Schottky diodes which were obtained on the basis of Ga2O3: N/n-Ga₂O₂. Upon nitrogen implantation, the carrier concentration smoothly decreases by 1-2 orders of magnitude. Lu et al. in ref. [71] reported the possibility of X-ray detection by a vertical Pt/Au Schottky diode based on a bulk β -Ga₂O₃. The obtained detector photosensitivity was 1.8 µC/Gy at a bias voltage of -25.8 V, the response time -10 s. It was found that the presence of oxygen vacancies in the β -Ga₂O₃ crystal degrades the detector sensitivity and response rate. Zhou et al. in ref. [72] reported about the leakage current in the Pt/ β -Ga₂O₂ Schottky contact at temperatures from 300 to 425 K. The main mechanism of the leakage current was determined by the emission of electrons through charge traps located at the metal-semiconductor interface, which is described by the Poole – Frenkel theory. The energy of these charge traps is defined as 0.7 eV below the conduction band. Raad et al. in ref. [73] showed a high temperature inertia in a Schottky diode. Such results were achieved by thermoreflectance-based tomography

of the temperature distribution in vertical Schottky diode on β -Ga₂O₃. Pulse activated temperature distribution lags behind the shape of the activation pulse which is associated with the low gallium oxide thermal conductivity. Oda *et al.* in ref. [74] examined Schottky diodes Pt/ α -Ga₂O₃. Gallium oxide layers were grown on sapphire substrates by gas-phase deposition, after which they were lifted off from the substrate. The resulting Schottky diodes showed series resistance and breakdown voltage of 0.1 m Ω ·cm² and 531 V for the first sample and 0.4 m Ω ·cm² and 855 V for the second one, respectively.

Yang *et al.* in ref. [75] created Schottky diodes on a bulk gallium oxide crystal doped with Sn. The rectifying contact material was Ni/Au, the contact diameter varied from 20 μ m to 0.53 mm. For these diameters, breakdown voltages and series resistance of 1600 V and 25 m $\Omega \cdot \text{cm}^2$, 250 V and 1.6 m $\Omega \cdot \text{cm}^2$ were obtained. I_{off} ratio for the resulting diodes ranged from $3 \cdot 10^7$ to 2.5 $\cdot 10^6$ at a bias of 1.3 V.

Schottky diodes based on Ga₂O₂ have already been described in detail. To achieve Schottky barrier oxides (SiO₂, HfO₂, IrO, Al₂O₃ and PdCoO₂) or metals (Pd, Ni, Pt, Au, W, Mo and Ti) are used. Current state of Ga₂O₃ Schottky diodes technology allows to fabricate samples with ideality coefficient value near 1. Structure modifications of such diodes are also objects of interest: ion implanted aperture or trench structure increase breakdown voltage of element. At room temperature created devices show rectification ratio up to 1010 and breakdown voltage over 1 kV. Comparative tables of metal/ β -Ga₂O₂ and metal oxide/ β -Ga₂O₂ compounds were given in supplementary materials of ref. [52]. The record achieved ideality factors are listed further: Au/Ni with n equal 1.00 and barrier height 1.2 eV, Pt with 1.03 and 1.53 eV, Pd with 1.05 and 1.29, Ni with 1.02 and 1.21 eV, Au/W with 1.04 and 0.97 eV. As for metal oxides, AuO turns out to be the contact with the least ideality factor -1.02and barrier of 1.69 eV. Next oxides are RuO, with 1.05 and 1.59 eV, PtO, and IrO, with factor of 1.08 along with 1.06 eV and 1.78 eV consequently.

6. SOLAR-BLIND PHOTODETECTORS

 Ga_2O_3 has attracted much attention recently, and its characteristics of solar-blind UV detection have been demonstrated in various device structures, including metalsemiconductor-metal (MSM) structure, Schottky junction, and heterojunction structure. MSM photodetectors are renowned for its fast response speed due low capacitance per unit area and low built-in electric field in the Schottky junction, as well as design simplicity and easy preparation. To effectively utilize solar-blind photodetectors in secure communication and space

Fig. 10. Thin film MSM structure photodetector, adapted from [79].

detection fast response times and self-powered ability are strongly required. The vertical Schottky photodiode should satisfy this requirement. Although great progress has been made in Ga_2O_3 photodetectors, the responsivity remains relatively low [76]. On the other hand, Schottky photodiodes have many advantages over MSM photodetectors, such as higher response speed and possible zero bias operation due to the builtin electric field, high quantum efficiency, low dark current, and high UV/dark current ratio because of the existence of Schottky barrier [77].

The first solar-blind photodetector based on Ga₂O₂ epitaxial layers obtained by metal organic chemical vapor deposition (MOCVD) was reported by Pavesi et al. in ref. [78]. The rise and decay times were 2 s. The implemented detector demonstrated a 3 orders of magnitude difference between illumination above / below the band gap. Using MBE Guo *et al.* in ref. [79] grew β -Ga₂O₂ on sapphire substrates at various oxygen pressures and ambient temperatures. Structure of implemented solarblind detector is shown in Fig. 10. The best sample was obtained at 5.10"3 Pa and 750°C. Based on this sample, a MSM photodetector was obtained that showed strong absorption at wavelengths less than 250 nm. The rise and decay times of the pulse were 0.86 and 16.61 s, respectively. Zhang et al. in ref. [80] fabricated an amorphous gallium oxide solar-blind MSM photodetector whose characteristics were tuned by the oxygen vacancy concentration. The resulting dark current, response time, photosensitivity and high UV-C/UV-A suppression ratios were 1 pA, 243.9 s, 55.5 A/W, and 103, respectively. Varying the oxygen flow during the film deposition makes it possible to change the amorphous gallium oxide conductivity, which subsequently leads to a change in the type of contact.

Chen *et al.* in ref. [81] showed a Schottky photodetector implemented on an Au/ β -Ga₂O₃ nanowires array. At -30 V bias the device displays a low dark current of 10 pA. The estimated ideality factor and series resistance were 30 and 10⁸ Ohm, which is explained by damage to the structure or by the non-conductive layer at the interface between the gold contact and gallium oxide. At 0 V bias the photodiode has a sensitivity of about 0.01 mA/W and a rejection ratio of 258 nm/280 nm is 11, while at 258 nm/400 nm it is 38. Photosensitivity in the non-solar-blind range and the poor quality of epitaxial structures due to the mismatch of the lattice parameter are problems that are inherent in existing photodetectors based on heterojunctions with gallium oxide. Guo in ref. [82] proposed to solve these problems when manufacturing a photodetector based on the phase transition of α - and β -Ga₂O₃. Investigation of the resulting nanorods array with a phase transition showed that photogenerated carriers can be effectively separated. Suzuki et al. in ref. [83] increased the Schottky photodiode sensitivity by 10² for wavelengths that are less than 260 nm by annealing at 400 K. The maximum photosensitivity was 103 A/W. The suppression coefficient of 240 nm/350 nm is equal to 106. The ideality coefficient after annealing approached one. Nakagomi et al. in ref. [84] demonstrated a Schottky photodiode based on a Ga₂O₂/SiC heterojunction by vaporizing gallium in an oxygen plasma. The rise and decay times of the pulse are 1.2 µs and 1.5 µs, respectively. The suppression ratio of 240 nm/350 nm is 130. Kong et al. in ref. [85] showed a Schottky photodiode based on graphene/gallium oxide heterostructure. The rise and decay times were 94.83 s and 219.19 s. The photosensitivity was 39.3 A/W, and the external quantum efficiency was 1.96 104. Photodetector based on another heterostructure - α -Ga₂O₂/ZnO was fabricated by Chen *et al.* in ref. [86]. An intermediate layer formation at the heterojunction was noted - diffused Ga and Zn atoms lead to bending of the energy bands boundaries, which affects the Schottky diode rectifying properties. The I-V characteristic was also simulated, which repeat the curves obtained by measuring. Also a solar-blind photodetector based on graphene/β-Ga₂O₃ heterostructure was demonstrated by Chen et al. in ref. [87]. The resulting radiation detector at zero bias voltage has a photosensitivity

of 10.3 mA/W (wavelength 254 nm), a UV/visible rejection ratio of $2.28 \cdot 10^2$ with rise and decay times of 30 ns and 2.24 µs, respectively. Such a low response time was explained by the high velocity of charge carriers in graphene and gallium oxide and a low number of defects at the graphene/ β -Ga₂O₃ interface. The effect of the oxygen vacancies concentration on the β -Ga₂O₂/SiC heterostructure detector photosensitivity was discussed in detail by An et al. in ref. [88]. Presence of oxygen vacancies impairs the rectifying properties as well as the photosensitivity of the device. For the sample with the lowest oxygen vacancy content, a sensitivity of 6308% [$(I_{light} - I_{dark}) / I_{dark}$] (wavelength 254 nm) and a rectification factor of 1900 [forward/reverse currents] were obtained. Alema et al. in ref. [89] designed a solarblind photodetector based on β -Ga₂O₂ with MOS-hydride epitaxy, which demonstrates a rectification factor of 108 at 2 V bias. The diode ideality factor and breakdown voltage are 1.23 and 110 V. Suppression factor 10⁴. Photosensitivity 0.16 A/W at 222 nm with a bias voltage of 0 V, giving an external quantum efficiency of 87.5 %. Oshima et al. in ref. [90] showed a vertical photodetector grown on a gallium oxide substrate with rectification coefficients greater than 106 at a bias voltage of 3 V. At a wavelength of 254 nm, its photosensitivity was 3.1 A/ W. Cui et al. in ref. [91] explored a solar-blind photodetector based on amorphous gallium oxide grown on quartz and polyethylene naphthalate substrates. The detectors were obtained at various oxygen pressures, and the optimal value was determined at which a decrease in the oxygen vacancies number and an increase in the Schottky barrier height were observed. The detectors showed a pulse decay time of 19.1 µs and a photosensitivity of 0.19 A/W. At the same time, devices on a flexible substrate do not show degradation under elastic stresses.

Large values of photosensitivity and EQE can be achieved by creating solar-blind detectors on 2D nanostructures. Thus, Tian et al. in ref. [92] showed a solarblind detector based on Ga₂O₂ nanobands doped with indium. The resulting photodetector demonstrated a high photosensitivity of $5.47 \cdot 10^2$ A/W, a quantum efficiency of $2.72 \cdot 10^5$ %, and a shorter rise/decay time of 1/0.6 s compared with a similar non-doped device based on Ga₂O₃ nanobands, and also with other doped photodetectors. Oh et al. in ref. [93] implemented a photodetector on a gallium oxide film obtained by mechanical exfoliation. The Schottky diode implemented on β -Ga₂O₂ showed a low dark current - 2.8 \cdot 10⁻¹³ and high sensitivity in the UV C range - 1.68 A/W. The suppression coefficient of 254 nm/365 nm was 1.92 · 103. The time response was 1.76 s for on and 0.53 s for off. Another solar-blind photodetector was obtained using the same technology Kim et al. in ref. [94], which demonstrates a sensitivity of 1.8.105 and an external quantum efficiency of 8.8 · 10⁵ at a bias voltage of -30 V. Zhong et al. in ref. [95] showed the implementation of a solarblind photodetector with an average Ga₂O₂ plate thickness of 63 nm. The resulting device demonstrates high photosensitivity - 19.31 A/W and external quantum efficiency - 9427%, which surpass similar characteristics of detectors implemented on other nanostructures (nanowires and nanoribbons). Rise and decay times are about 20 ms. By magnetron sputtering a thin-film photodetector based on magnesium-doped Ga₂O₂ was obtained by Qian et al in ref. [96]. The obtained sample sensitivity is 8.7.105%, the photosensitivity is 23.8 mA/ W, the pulse decay time was 0.02 s. The authors reported that the dark current of the device (4.1 pA) is three orders of magnitude lower than that of the same samples of gallium oxide without doping. Also, a 1D nano-structures was utilized to avalanche photodetector fabrication by Zhao et al. in ref. [97] who reported about an ZnO/Ga₂O₂ core/shell microwires device. The photosensitivity at -10 V bias was 5.18 10³ A/W, and the rise and decay times were 20 µs and 42 µs, respectively. Another avalanche PD was received using MOCVD by Ahn et al. in ref. [98] The thermal dependences of its characteristics was examined: when changing from 25 to 350 °C, the photocurrent (wavelength 254 nm) varied from 2.5 · 10⁻⁷ A to 2.2 · 10⁻⁶ A, photosensitivity - from 5 to 36 A/W and external quantum efficiency from $2.5 \cdot 10^3$ to 1.75.104%. Such high values are explained by the effect of charge carriers multiplication. Tak et al. in ref. [99] investigated the effect of gamma radiation on β -Ga₂O₂ solar-blind photodetector obtained with PLD. The dark current decreased from 3.27 · 10"7 A to 1.88 · 10"7 A. On the contrary, the Schottky barrier height was increased after irradiation, which is explained by an image-force lowering.

Gallium oxide solar-blind photodetectors spectral responsivity (Fig. 11) is presented in the review prepared by Xu *et al.* [100] along with solar-blind photodetectors technology current state general description.

7. MEMORY DEVICES

In the next generation nonvolatile memory, great attention is being paid to the resistive random access memory (RRAM) technology development gradually replacing the more traditional dynamic random access memory and flash memory. Resistance switching effect observed in RRAM consists in the appearance of conductive structures in the material, that can also be observed in gallium oxide. So, Lee *et al.* in ref. [101] implemented resistance switching of a Ga₂O₃ film doped with chromium, which create oxygen vacancies during diffusion

Fig. 11. Responsivity of Ga_2O_3 photodetector, adapted from [100].

into the structure. Varying the film size and the annealing temperature changes the structure resistance The films conductivity changing mechanism was associated with the formation/destruction of conducting objects at the interface between Ti and the Cr: Ga₂O₃ film. Hou *et al.* in ref. [102] investigated oxygen vacancies conducting filaments in β -Ga₂O₃. Three types of oxygen leaks have been found, which form filaments with different resistance values, which suggests the use of gallium oxide in multilevel memory cells. It was found that the conductive filaments are formed preferably in the direction [010].

Pan et al. in ref. [103] investigated ITO/Ga2O2: ITO/ TiN structure resistance switching. The conduction mechanism can be realized both at the contact surface and during the formation of conducting fibers inside the structure. The obtained states with low and high conductivity are stable for 10⁴ s at 85 °C, which, when extrapolated, gives 10 years of operation at room temperature. The presence of an additional Pt contact suppressed oxygen ions release which changed the resistance switching mechanism in the device. Yan et al. in ref. [104] showed bipolar resistance switching in the In-Ga-Zn-O/Ga₂O₃/In-Ga-Zn-O structure. The resulting device has a transmission of 91.7% in the visible range. With 200 switching cycles, the resistance value is still distinguishable for high and low conductivity modes -280 and 20 kΩ, respectively. Zhi et al. in ref. [105] showed bipolar and unipolar changes in resistance in the Cu₂O/ Ga₂O₃ structure and a controlled mechanism of transition between them (Fig. 12, Fig. 13). The voltages SET and RESET are around 4 and -6 V for bipolar switching. High resistance values are $10^4 \Omega$, while low values fluctuate between 46 and 210 Ω . Both resistances are stable for more than 10⁴ s. Yang et al. in ref. [106] examined the oxygen concentration influence on the operation of resistive memory devices with random access Al/Ga₂O₃/

Fig. 12. Typical current-voltage curves for the bipolar resistive switching (blue curve) and unipolar switching (red curve), adapted from [105].

Fig. 13. Endurance property of the device in bipolar resistive switching mode, adapted from [105].

Fig. 14. RRAM device schematic structure, adapted from [109].

ITO. As a result, the sample with 25% oxygen showed the best result with the number of switching cycles equal to 220. The I_{on}/I_{off} ratio was $5 \cdot 10^4$, the stability time was 10^4 , and the high/low resistance ratio of the device was about $7 \cdot 10^5$. The SET and RESET voltages for the device were -1.68 and 0.45 V. Gan *et al.* in ref. [107] investigated the effect of temperature and annealing atmosphere on the switching properties of the Cu/TiW/Ga₂O₃/ Pt memory device resistance. Annealing in nitrogen and oxygen atmospheres decreases the values of the SET and RESET voltages. After annealing in a pure nitrogen (N_2) atmosphere, the devices showed an increase in memory area and an increase in stability when switching states. Zheng et al. in ref. [108] implemented a resistance switching memory device on the GZO-Ga₂O₃-ZnO-Ga₂O₂-GZO structure obtained by chemical vapor deposition of organometallic compounds. The manufactured device is 92% transparent in the visible range. The SET and RESET voltages for the device were -12 and 14 V. The high/low resistance ratio of the device was 10^2 and both states are stable for 10^5 s. Gan *et al.* in ref. [109] showed a resistance switching device (Fig. 14) with a Cu/TiW/IGZO/Ga2O3/Pt structure. The high/low resistance ratio exceeds 10³, the stability of states is observed for 104 s at 85 °C. The SET and RESET voltages for such a device were 2.5 and -2 V, respectively. Gan et al. in ref. [107] examined the influence of annealing parameters on a memory device based on an amorphous gallium oxide layer. Annealing in a nitrogen atmosphere improves the device parameters. The high/low resistance ratio was 10⁵, with the number of switchings 750 at a temperature of 85 °C. The voltages SET and RESET ranged from 2.2 to 4 V and from -0.5 to -2 V, respectively. Shen et al. in ref. [110] showed bipolar resistance switching in the Pt/Ga₂O₂/SiC/Pt structure. The voltages SET and RESET were 0.82-1.92 V and from -1.3 to -0.408 V, respectively, which is a 1.2 V the memory area, which is determined by the difference between the SET and RE-SET voltages, where there is no overlap between these states. The ratio of resistances in two states exceeds 10^3 , and their stability is observed for a time exceeding 10⁴ s. The article also provides a quick table comparing the different types of resistance switching devices.

There are also implementations of RRAM based on nanostructures. Thus, Weng et al. in ref. [111] showed resistance switching in β -Ga₂O₂ nanowires grown on a Si substrate. The average diameter of the resulting structure was 127 nm. The measurements were carried out for pure nanowires and for partially gold-plated ones. For the first, the SET and RESET voltages were 3.1 and -3.25 V, when, with partial gold plating, these values decrease to 1.87 and -1.9 V. Hsu et al. in ref. [112] showed bipolar resistance switching on a single Au-Ga₂O₃ nanowire (core/shell). The ratio of high and low resistance is greater than 103, the SET-RESET voltages are 6 and -8.5 V. Tsai et al. in ref. [113] demonstrated the rapid synthesis of a memory device using local anodic oxidation under atomic force microscopy. For the obtained gallium oxide nanodots with a typical size of 300 nm, states with high and low resistance values were obtained, which amounted to 9.19 M Ω and 2.97 k Ω , respectively, which gives a difference of three orders of magnitude.

The capacitance memory device can also be based on the charge trap effect. So, Weng *et al.* in ref. [114] implemented a charge trap memory device based on Ga_2O_3 layers. The Au/ Ga_2O_3 /SiO₂/Si structure was obtained by magnetron sputtering and high-temperature annealing. Moreover, at different annealing temperatures, was different. So, the memory area was 1.6, 3, 4.8 and 1.5 V for annealing temperatures of 600, 680, 760 and 780 °C, respectively. The degradation of high and low capacitance states was 1% and 1.7% after 10^4 s.

Thus, multilevel memory cells on Ga_2O_3 based heterostructures, nanodots and nanowires were shown recently with high/low resistance ratio ~ 10³, SET & RESET voltages not exceeding ±5V and stability over 10⁴ s. Most of the structures described were created by rf-magnetron sputtering. Promising area in RRAM manufacturing is transparent device construction with transmittance factor exceeding 90%.

8. FIELD EFFECT TRANSISTORS

There are results mentioned of various field-effect transistors producing: MOSFETs, MISFETs, MESFETs on different gallium oxide polymorphs and heterostructures. To meet the demands of the modern power electronics application areas, the high breakdown voltage with I_{on}/I_{off} ratio and low leakage current is of great interest. The largest number of reports is aimed at improving these characteristics, increasing the FETs technological performance, modernizing the technology for growing gallium oxide layers and devices manufacturing. For example, Madadi *et al.* in ref. [115] carried out modeling of transistors in order to optimize the carriers distribution in the structure and increase a breakdown voltage, structure self-heating, parasitic capacitance and charge carriers concentration.

Implementing a tunnel diode to change the carrier distribution reduced the leakage current in the transistor saturation region. Tetzner et al. in ref. [116] studied the possibility of creating transistors with a large electric breakdown field. The devices demonstrated a threshold voltage, I_{on}/I_{off} and a subthreshold slope of -3.6 V, 10⁹ and 200 mV/dec, respectively. The breakdown voltage reached a record value among similar devices and was about 1200 V. The main factor that lowers the breakdown voltage was the increased Si concentration between the β -Ga₂O₂ epitaxial layer and the substrate. Green et al. in ref. [117] implemented a MOSFET with a record transconductance of 21 mS/mm (Fig. 15, Fig. 16). Extrinsic cutoff frequency and maximum oscillating frequency were 3.3 and 12.9 GHz, respectively; I_{on}/I_{off} was 10⁶. Operation in the radio frequency range is achieved by reducing the contact resistance by heavy doping in the contact area.

Fig. 15. Extrinsic small signal RF gain performance recorded at $V_{GS} = -3.5$ V (peak g_m) and $V_{DS} = 40$ V, adapted from [117].

Fig. 16. Cutoff frequency (f_{τ}) and maximum oscillating frequency (f_{max}) as a function of drain bias. Each measurement was taken with the gate contact biased with the gate voltage corresponding to peak transconductance, adapted from [117].

At the research initial stage, one often resorts to computer simulation of device performance, the results of which are widely reported. So, Kotecha et al. in ref. [118] simulated and analyzed a vertical MOSFET on β -Ga₂O₂. The study showed an inverse relationship between the threshold voltage and the current amplification, and their dependence on the device geometry and the acceptor concentration in the crystal. Also, the temperature dependences are investigated, and the released power during a short circuit failure of the transistor is studied. Lv et al. in ref. [119] performed a simulation and implemented a two field electrodes transistor with a breakdown voltage above 3000 V after the device annealing in an oxygen atmosphere. The developed MOSFET was grown using organometallic gas-phase epitaxy. The device threshold voltage was 4.1 V, I_{on}/I_{off} about 10⁸. Park *et al.* in ref. [120] conducted a vertical transistor on Ga_2O_3 simulation. In particular, the source geometry was analyzed in detail and its significant influence on the device characteristics was found. The maximum drain current was 750 A/cm² with a gate bias of 3 V. For an optimized structure, I_{on}/I_{off} exceeds 10⁸, the breakdown voltage is about 400 V.

For gallium oxide based heterostructures various results presented. Kim et al. in ref. [121] reported a fieldeffect transistor with a transition gate on the WSe₂-Ga₂O₂ heterostructure. A WSe, thin layer was deposited on a mechanically separated β -Ga₂O₃ plate, resulting in a high quality heterointerface. The I_{on}/I_{off} ratio was 10⁸, the subthreshold slope - 133 mV/dec, the three-contact breakdown voltage - 144 V. Dang et al. in ref. [122] obtained a MESFET on *n* type α -Ga₂O₂ Schottky diode and AgO₂ by chemical vapor deposition. The rectification factor of a typical device and the breakdown voltage - 6.106 and 19.6 V. Also, the transistors capable of withstanding voltages up to 48 V were implemented. The I_{aff}/I_{aff} ratio was 2 107. The resulting device is transparent in the visible range. Kim et al. in ref. [123] studied MISFET on the h BN/ β -Ga₂O₂ heterostructure. h-BN has a clean and smooth surface and does not introduce discontinuities in the charge density at the interface with gallium oxide, which allows to obtain better transistor characteristics such as I_{on}/I_{off} ratio, subthreshold slope and threshold voltage. These values for the device were respectively 106, 502 mV/dec and -48 V. Tadjer et al. in ref. [10] showed the first MOSFET with β -Ga₂O₃ epitaxial layers obtained at high growth rates during MOCVD. For the devices obtained, a record carrier mobility was $170 \text{ cm/(V \cdot s)}$, which is superior to the results previously shown for Ga_2O_3 -based devices. I_{on}/I_{off} value was 108, threshold voltage -15 V. Yadava et al. in ref. [124] was the first to propose a transistor device on a β-Ga₂O₂/black phosphorus heterostructure. MOSFET was tested for operation at high frequencies. The maximum drain current was 43.15 mA/mm, the power gain was 15.3 dB, the output power was 15.11 dBm, and the efficiency was 3%. The I_{off}/I_{off} ratio is greater than 10¹⁰. Higashiwaki et al. in ref. [11] showed a transistor grown on a $Ga_{2}O_{2}$ (010) substrate by molecular beam epitaxy. The device three-contact breakdown voltage was greater than 250 V when the leakage current was 3 μ A. The I_{on}/I_{off} ratio is approximately 10⁴. Xia *et al.* in ref. [125] obtained a MESFET on β -Ga₂O₃ with ohmic contacts on an additionally grown β -Ga₂O₂ layer, leading to reduce the longitudinal contact resistance to 1.5 Ω /mm. The resulting transistor has a peak drain current of 140 mA/mm, a three-contact breakdown voltage of 170 V. I_{on}/I_{off} was 10⁵. Kim *et al.* in ref. [126] investigated the properties of MESFET on annealed β-Ga₂O₃ with Pt/Au Schottky contacts. The resulting transistor on a microlayer of gallium oxide showed performance up to 700 °C, after which the Schottky contact breakdown begins. Above 800 °C, the Pt/Au contact exhibits the ohmic contact properties. Authors also obtained the dependencies of the I_{on}/I_{off} ratio, the Schottky barrier height, and the transmissibility from the annealing temperature. Matsuzaki et al. in ref. [127] examined a MISFET on a gallium oxide epitaxial layer. The grown films with a band gap of 4.9 eV are transparent from the near-IR to far-UV ranges. Crystalline structure of epitaxial film was different from β -Ga₂O₃ and showed high conductivity. The resulting transistor has a threshold voltage of -6.7 V and a drift mobility of $5 \cdot 10^{-2} \text{ cm}^2/(\text{V} \cdot \text{s})$. Zhang *et al.* in ref. [128] demonstrated a field-effect transistor on a double heterostructure β -(Al_xGa_{1-x})₂O₃/Ga₂O₃ with a quantum well. The device has a maximum leakage current of 257 mA/mm, a transconductance of 39 mS/mm, and a breakdown voltage of 428 V. Ahmadi et al. in ref. [129] showed a transistor on the β -(Al_xGa_{1-x})₂O₃/ β -Ga₂O₃/ $(Al_{a}Ga_{1})_{2}O_{2}$ heterostructure obtained by molecular beam epitaxy. Authors also investigated the effect of Ga polishing on the surface morphology and the concentration of unintentionally doped Si atoms. The maximum current density was 20 mA/mm and the transconductance was 4 mS/mm. I_{av}/I_{aff} ratio exceeded 10⁹ for polished and unpolished samples. Higashiwaki et al. in ref. [130] grew a MOSFET by molecular beam epitaxy on a \hat{a} -Ga₂O₂ (010) substrate and examined the resulting device performance at different temperatures. To obtain ohmic contacts, gallium oxide was doped with Si. The I_{ar}/I_{aff} ratio for the transistor is greater than 10¹⁰; the three-pin breakdown voltage was 370 V; the maximum drain current at 4 V bias was 39 mA/mm. The resulting devices can operate up to 250 °C without permanent changes in structure and characteristics. Moser et al. in ref. [131] designed a β -Ga₂O₂ based transistor with a record current density exceeding 450 mA/mm. The carrier concentration influence on the resulting MOSFET electrical parameters was investigated. An analytical model with voltage correction factor that accurately predicted the performance for all doping variations was built. The I_{an}/I_{off} ratio was 10^{8.6}. Later, Moser *et al.* in ref. [132] showed a Ge-doped β -Ga₂O₃ transistor grown by molecular beam epitaxy. The I_{on}/I_{off} ratio was 10⁸, the drain current exceeded 75 mA/mm at zero bias ($V_{g} = 0$), and the breakdown voltage was 479 V. The measured carrier mobility was 111 cm²/(V \cdot s). Also, the work presents a short table comparing the parameters of existing MOSFET. Recently, Moser et al. in ref. [133] received a MOSFET with an L-shaped contact with a maximum transducer gain, maximum output power, and peak power added efficiency of 13 dB (15 dB), 715 mW/mm (487 mW/mm), and 23.4% (21.2%), respectively, at frequencies of 1 GHz (2 GHz). The transconductance of the de-

Fig. 17. Semi-log transfer characteristics measured at $V_{DS} = 30$ V of the FP MOSFET, adapted from [134].

Fig. 18. Cross-section of vertical MOSFET with current blocking layer (CBL), adapted from [136].

vice and I_{off}/I_{off} were 40 mS/mm and 10⁸. Mun *et al.* in ref. [134] manufactured a β -Ga₂O₂ MOSFET with a field electrode at the source contact and a breakdown voltage -2.32 kV (Fig. 17). This device was obtained by molecular beam epitaxy on an Fe-doped substrate. The I_{or}/I_{off} ratio was 107. The investigated dependence of the breakdown voltage from the distance between the drain and the gate turned out to be directly proportional. Liddy et al. in ref. [135] implemented a β -Ga₂O₃ MOSFET with refractory metals as contacts and a self-aligned gate. The resulting device has a transconductance of 35 mS/mm, a drain current density of 140 mA/mm and an I_{an}/I_{aff} of more than 108, subthreshold slope - 121 mV/dec. Also, the authors suggested that changing the size of the gate contact would increase the transconductance to 60 mS/mm. Wong et al. in ref. [136] manufactured a vertical transistor on Ga₂O₃ with a current aperture obtained by Mg ion implantation (Fig. 18). The diffusion of Mg atoms led to a high leakage current between the drain and the source, due to which the characteristics of the device turned out to be lower than those obtained in

computer simulations. The transconductance of the device was 1.25 mS/mm with a drain displacement of 8 V. Later Wong *et al.* in ref. [137] showed an improvement in the transistor characteristics upon implantation of Si ions in the drain and source contacts region. The maximum drain current was 1.4 mA/mm when the I_{on}/I_{off} ratio is 10⁶.

Researchers often resort to structural modifications to improve the device performance. For example, Ma et al. in ref. [138] investigated a MESFET with two asymmetric bases on β -Ga₂O₃ nanomembrane. The device characteristics: threshold voltage -57.7 V, The I_{on}/I_{off} ratio 1.7.10⁸, subthreshold slope - 470 mV/dec. Chabak et al. in ref. [139] grew a transistor with a buried gate by molecular beam epitaxy. The current from the drain is 40 mA/mm, I_{on}/I_{off} is about 10⁹. The maximum breakdown voltage for the resulting devices is 505 V, the subthreshold slope is 200 mV/dec. Sasaki et al. in ref. [140] obtained a vertical trench MOSFET on a (001) Ga2O3 substrate by chloride-hydride gas-phase epitaxy. I_{on}/I_{off} is about 10³, the switched-on resistance is 3.7 m $\Omega \cdot cm^2$. The device performed good static characteristics, however turn-off characteristics are negligible due to high leakage current.

A possible way to FETs modification is to study individual characteristics and the defects influence investigation. So, McGlone et al. in ref. [141] examined traps in the Si δ -doped β -Ga₂O₃ MESFET intermediate layer. Two traps with energies of -0.7 eV and -0.8 eV were found, which leads to threshold voltage and turnon series resistance deterioration. The -0.8 eV level was attributed to defects associated with Fe, while -0.7 eV was attributed to the point defect of the β -Ga₂O₃ crystal. Polyakov et al. in ref. [142] investigated the levels of defects in a transistor on a β -Ga₂O₃ nanoplate. The need for passivation layers to prevent current collapse is shown, since the device characteristics are influenced by the molecules that are absorbed on the surface of the gallium oxide. The rate of I_d - V_a change, the delay in the transistor opening and the current collapse in the pulsed mode depend on surface acceptors density with an energy of 1 eV. Reducing the acceptors concentration may improve the dynamic characteristics of the device. Wong et al. in ref. [143] examined the main charge carriers mobility in a MOSFET with a buffer layer that protects the channel from charge compensation by suppressing the Fe atoms diffusion and enhance the transistor electrical performance. When growth temperature increased from 560 to 650 °C, the leakage current through the buffer layer decreased 10⁷ times. The main negative effect of buffer insertion is parasitic conduction at the buffer/ substrate heterointerface.

Different types of FET based on different gallium oxide polymorphs heterostructures were reported, but

Fig. 19. EPR spectrum of Co^{2+} in β -Ga₂O₃ measured at 6 K with B||a^{*}, adapted from [145].

most common (or more investigated) type is MOSFET. For all types a vertical realization of transistor is more frequent due to easier fabrication. It was shown that the device structure should be modified (ion implanted aperture/trenches) to achieve theoretical breakdown electrical field value 8 MV/cm. The I_{on}/I_{off} for all devices are in 10⁶-10¹⁰ range, smaller values were obtained due to structural or interface defects. β -Ga₂O₃ high thermal stability provides FET steady operation with temperatures up to 250 °C.

9. SPINTRONIC APPLICATIONS

Along with the electrical, thermal, and chemical properties, in recent years, much attention has been paid to the gallium oxide magnetic properties study for use in spintronic devices. Thus, a number of research groups have investigated the magnetic properties of various Ga_2O_3 polymorphic modifications.

Luan *et al.* in ref. [144] investigated the structural, elastic and electronic properties of the \hat{a} -Ga₂O₃ crystal at pressures from 0 to 30 GPa. Calculations have shown that with pressure increasing, the band gap increases monotonically. It was also determined that the *a* lattice parameter compression occurs more easily than *b*, *c*. The calculated results of the change in the lattice constants are in agreement with the experimental results of X-ray structural analysis.

Stehr *et al.* in ref. [145] first measured the electron paramagnetic resonance spectra for Co^{2+} and Cu^{2+} in a β -Ga₂O₃ crystal (Fig. 19). It was shown that Co and Cu are present in the 2⁺ state in the 3d7 and 3d9 configurations, respectively. Atoms with a large ionic radius preferably take the place of octahedral Ga in the crystal lattice.

Wang *et al.* in ref. [146] investigated the electronic structure and magnetic properties of β -Ga₂O₃ doped

Fig. 20. Temperature dependent Hall measurements for the Si doped β -Ga₂O₃ thin films grown on c-plane sapphire substrates with different off angles toward <11 $\overline{2}$ 0>, adapted from [151].

with Mn. Pure gallium oxide band structure and the effect of Mn atoms incorporation was studied. Thus, doping leads to the formation of additional bands, which reduces the gallium oxide band gap. A crystal turns out to have the most stable structure and ferromagnetism if Mn atoms replace only the sites of octahedral Ga in the crystal lattice. For such a case, the calculation shows a Curie temperature of 421 K.

Shi *et al.* in ref. [147] described the production of high quality $CuGa_2O_4$ layers by copper layer evaporation at 1050 °C. The obtained samples were studied on a diffractometer, the measurements results showed an epitaxial bond between the $CuGa_2O_4$ layer and the β -Ga₂O₃ (201) substrate. The $CuGa_2O_4$ epitaxial layer (222) FWHM was 0.228°. The discrepancy in the lattice constants was 8.71%.

Hsieh *et al.* in ref. [148] got a metal-insulator-semiconductor (MIS) diode with a thin layer of α -Ga₂O₃ as an insulator. Gallium oxide was obtained by liquid-phase epitaxy and subsequent annealing at 400 °C. The manufactured Ni/ α -Ga₂O₃/Si MIS diode has an I_{on}/I_{off} ratio 100 times better than Ni/Si Schottky diode. Leakage current at -2 V bias was $1.07 \cdot 10^{-5}$ A/cm², breakdown voltage -166 V, barrier height 1.085 eV.

The results shown indicate the possibility of using gallium oxide to create spintronic devices - computer and track memory, spin transistors, and logic circuits. At the same time, the magnetic properties have not been fully investigated, and the topic remains relevant and requires further study.

10. OTHER DEVICES

Technological applications of gallium oxide in a number of areas are studied less intensively, but the results obtained allows to judge its prospects and high potential. For example, Kumar *et al.* in ref. [149] reported a brief review about the properties of gallium oxide nanostructures and nanowires. Also, applications of such nanotechnology was described.

Huang *et al.* in ref. [150] investigated the structural and photoelectric properties of â Ga_2O_3 /SiC multilayers grown by molecular beam epitaxy on sapphire (0001) substrates. Several samples were obtained with different annealing conditions, all of them exhibit a photoelectric response to the 254 nm UV radiation. Additional annealing of the SiC layer affects its crystallinity and leads to a decrease in carrier concentration. In turn, the sensitivity to UV radiation completely depends on the annealing conditions of the Ga_2O_3 layer.

Rafique *et al.* in ref. [151] examined the heteroepitaxial growth of β -Ga₂O₃ on sapphire (0001) substrates with an off-axis angle of up to 10° in the <11-20> direction (Fig. 20). Thin films were obtained using chemical vapor deposition at low pressure. The crystal structure and surface quality, as well as the electrical conductivity, strongly depend on the angle of deflection relative to the substrate axis. Such substrates utilization led to a decrease in the FWHM and an increase of the Raman peaks intensity relative to the layers ob-

Fig. 21. Thermal actuator schematic, adapted from [154].

tained on flat substrates. The best performance was obtained with a substrate with a deflection of 6° .

Sun *et al.* in ref. [152] conducted the energy bands study of the β -Ga₂O₃/AlN heterojunction. A gallium oxide layer of no more than 2 nm was deposited on AlN/ sapphire by pulsed laser deposition. For the obtained heterojunction, the shifts of the valence and conduction bands were measured, which amounted to -0.55 and -1.75 eV, respectively.

Rodriguez *et al.* in ref. [153] used α -Ga₂O₃ as a photocatalyst for the decomposition of malachite green. The study of gallium oxide on a diffractometer after the catalytic reaction showed no phase transition in the material.

Peres *et al.* in ref. [154] showed the first Ga_2O_3 -based temperature activated mechanical actuator (Fig. 21). The device works on the principle of thermal expansion of the material during self-heating while passing current through the plate. The maximum value that the drive has risen is 42.38 microns.

Gallium oxide is a promising material, but the current research results are still insufficient realize its full potential. Thus, the absence of a normal substrate for gallium oxide makes it necessary to investigate the ability of growing epitaxial layers on materials with which the lattice constant is very different. Also, the applications of Ga_2O_3 as a mechanical micro-piston or as a photocatalyst are also interesting to consider. Further studies of such a material as gallium oxide will allow to understand its potential more accurately for creating various devices and, probably, will make it possible to achieve its maximum theoretical characteristics.

11. SUMMARY AND CONCLUSIONS

The review considers both the gallium oxide main application areas and areas that are at the initial stage of development and require additional large-scale investigations to study the proposed solutions effectiveness.

The unique Ga_2O_3 physical properties allow it to remain one of the most interesting and promising wide band gap semiconductors for quite a long time. At the moment, six of its polymorphic modifications have been investigated, among which the β -Ga_2O_3 attracts researchers special attention due to its high stability. The increased interest is confirmed by a large number of reports devoted to both the study of the β -Ga_2O₃ growth technology and \hat{a} -Ga_2O₃ based device manufacturing.

The wide band gap, high breakdown voltage, and sufficiently high mobility determine the gallium oxide main application areas: solar-blind photodetectors, power rectifiers and transistors, resistive memory devices. The most significant results have been shown in these areas to date. Meanwhile, a fairly large number of reports are devoted to the Ga_2O_3 luminescent properties investigation, and the development of multi-colored phosphors based on it, as well as the study of the magnetic properties in the case of doping with various metals for spintronic devices. The poorly studied application areas described at the separated review section are no less interesting in the future development of gallium oxide technology.

ACKNOWLEDGEMENTS

The support from Russian Science Foundation (grant no. 19-19-00686) is gratefully acknowledged.

REFERENCES

- [1] NSM Archive Physical Properties of Semiconductors, (n.d.). <u>http://www.ioffe.ru/SVA/</u> <u>NSM/Semicond/</u> (accessed September 15, 2021).
- [2] R. Roy, V.G. Hill and E.F. Osborn, *Polymorphism of Ga₂O₃ and the System Ga₂O₃ -H₂O, J. Am. Chem. Soc., 1952, vol. 74, pp. 719–722.
 https://doi.org/10.1021/ja01123a039*
- [3] H.Y. Playford, A.C. Hannon, E.R. Barney and R.I. Walton, Structures of Uncharacterised Polymorphs of Gallium Oxide from Total Neutron Diffraction, Chem. - A Eur. J., 2013, vol. 19, no. 8, pp. 2803–2813. <u>https://doi.org/10.1002/</u> <u>chem.201203359</u>
- [4] S.I. Stepanov, V.I. Nikolaev, V.E. Bougrov and A.E. Romanov, *Gallium oxide: Properties and applications - A review*, Rev. Adv. Mater. Sci., 2016, vol. 44, no. 1, pp. 63–86.
 <u>https://www.ipme.ru/e-journals/RAMS/no_14416/</u> 06_14416_stepanov.pdf
- [5] H. He, M.A. Blanco and R. Pandey, *Electronic and thermodynamic properties of* β-Ga₂O₃, Appl. Phys. Lett., 2006, vol. 88, art. 261904. https://doi.org/10.1063/1.2218046
- [6] S. Yoshioka, H. Hayashi, A. Kuwabara, F. Oba, K. Matsunaga and I. Tanaka, *Structures and energetics of Ga₂O₃ polymorphs*, J. Phys. Condens. Matter., 2007, vol. 19, art. 346211. https://doi.org/10.1088/0953-8984/19/34/346211
- [7] N.D. Cuong, Y.W. Park and S.G. Yoon, *Microstructural and electrical properties of Ga2O3 nanowires grown at various temperatures by vapor–liquid–solid technique*, Sensors Actuators B Chem., 2009, vol. 140, no. 1, pp. 240–244. <u>https://doi.org/10.1016/j.snb.2009.04.020</u>
- [8] A. Fiedler, R. Schewski, Z. Galazka and K. Irmscher, Static Dielectric Constant of β-Ga₂O₃ Perpendicular to the Principal Planes (100), (010), and (001), ECS J. Solid State Sci. Technol.,

2019, vol. 8, no. 7, pp. Q3083–Q3085. https://doi.org/10.1149/2.0201907jss

- [9] S.J. Pearton, J. Yang, P.H. Cary, F. Ren, J. Kim, M.J. Tadjer and M.A. Mastro, A review of Ga₂O₃ materials, processing, and devices, Appl. Phys. Rev., 2018, vol. 5, pp. 0–56. <u>https://doi.org/10.1063/</u> <u>1.5006941</u>
- [10] M.J. Tadjer, F. Alema, A. Osinsky, M.A. Mastro, N. Nepal, J.M. Woodward, R.L. Myers-Ward, E.R. Glaser, J.A. Freitas, A.G. Jacobs, J.C. Gallagher, A.L. Mock, D.J. Pennachio, J. Hajzus, M. Ebrish, T.J. Anderson, K.D. Hobart, J.K. Hite and C.R. Eddy Jr., *Characterization of* β-Ga₂O₃ *homoepitaxial films and MOSFETs grown by MOCVD at high growth rates*, J. Phys. D. Appl. Phys., 2012, vol. 54, art. 034005. https://doi.org/10.1088/1361-6463/abbc96
- [11] M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui and S. Yamakoshi, *Gallium oxide* (Ga₂O₃) metal-semiconductor field-effect transistors on single-crystal β-Ga₂O₃ (010) substrates, Appl. Phys. Lett., 2012, vol. 100, pp. 1–4. https://doi.org/10.1063/1.3674287
- [12] M. Yan-Mei, C. Hai-Yong, Y. Kai-Feng, L. Min, C. Qi-Liang, L. Jing and Z. Guang-Tian, *High-Pressure and High-Temperature Behaviour of Gallium Oxide*, Chinese Phys. Lett., 2008, vol. 25, pp. 1603–1605. <u>https://doi.org/10.1088/0256-307X/25/5/022</u>
- [13] A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui and S. Yamakoshi, *High-quality* β-Ga₂O₃ single crystals grown by edge-defined film-fed growth, Jpn. J. Appl. Phys., 2016, vol. 55, no. 12, art. 1202A2. <u>https://doi.org/10.7567/</u> JJAP.55.1202A2
- [14] K. Kaneko, T. Nomura, I. Kakeya and S. Fujita, Fabrication of Highly Crystalline Corundum-Structured α-(Ga_{1-x}Fe_x)₂O₃ Alloy Thin Films on Sapphire Substrates, Appl. Phys. Express., 2009, vol. 2, no. 7, art. 075501. <u>https://doi.org/10.1143/</u> <u>APEX.2.075501</u>
- [15] H. Hayashi, R. Huang, H. Ikeno, F. Oba,
 S. Yoshioka, I. Tanaka and S. Sonoda, *Room temperature ferromagnetism in Mn-doped* γ-Ga₂O₃ with spinel structure, Appl. Phys. Lett., 2006, vol. 89, art. 181903. <u>https://doi.org/10.1063/</u> <u>1.2369541</u>
- [16] M.B. Maccioni and V. Fiorentini, Phase diagram and polarization of stable phases of (Ga_{1"x}In_x)₂O₃, Appl. Phys. Express., 2016, vol. 9, no. 4, art. 041102. <u>https://doi.org/10.7567/APEX.9.041102</u>
- [17] X. Xia, Y. Chen, Q. Feng, H. Liang, P. Tao, M. Xu and G. Du, *Hexagonal phase-pure wide band* gap ε-Ga₂O₃ films grown on 6H-SiC substrates

by metal organic chemical vapor deposition, Appl. Phys. Lett., 2016, vol. 108, no. 20, art. 202103. <u>https://doi.org/10.1063/1.4950867</u>

- [18] M.B. Sahariah and C.Y. Kadolkar, *Short range potential parameters and electronic polarizabilities of* β-*Ga*₂*O*₃, J. Phys. Condens. Matter., 2007, vol. 19, art. 156215. https://doi.org/10.1088/0953-8984/19/15/156215
- [19] J.B. Varley, J.R. Weber, A. Janotti and C.G. Van de Walle, Oxygen vacancies and donor impurities in β-Ga₂O₃, Appl. Phys. Lett., 2010, vol. 97, art. 142106. https://doi.org/10.1063/1.3499306
- [20] D.A. Bauman, A.I. Borodkin, A.A. Petrenko, D.I. Panov, A.V. Kremleva, V.A. Spiridonov, D.A. Zakgeim, M.V. Silnikov, M.A. Odnoblyudov, A.E. Romanov and V.E. Bougrov, *On improving the* radiation resistance of gallium oxide for space applications, Acta Astronaut., 2021, vol. 180, pp. 125–129. <u>https://doi.org/10.1016/</u> j.actaastro.2020.12.010
- [21] M.A. Mastro, A. Kuramata, J. Calkins, J. Kim,
 F. Ren and S.J. Pearton, *Perspective— Opportunities and Future Directions for Ga*₂O₃,
 ECS J. Solid State Sci. Technol., 2017, vol. 6, no. 7,
 pp. P356–P359. <u>https://doi.org/10.1149/</u> 2.0031707jss
- [22] D. Guo, Q. Guo, Z. Chen, Z. Wu, P. Li and
 W. Tang, *Review of Ga₂O₃-based optoelectronic devices*, Mater. Today Phys., 2019, vol. 11, art. 100157. <u>https://doi.org/10.1016/</u>
 j.mtphys.2019.100157
- [23] M. Bartic, M. Ogita, M. Isai, C.L. Baban and H. Suzuki, Oxygen sensing properties at high temperatures of Â-Ga₂O₃ thin films deposited by the chemical solution deposition method, J. Appl. Phys., 2007, vol. 102, no. 2, art. 023709. <u>https://doi.org/10.1063/1.2756085</u>
- [24] M. Bartic, Y. Toyoda, C.I. Baban and M. Ogita, Oxygen sensitivity in gallium oxide thin films and single crystals at high temperatures, Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap., 2006, vol. 45, no 6R, pp.5186–5188. <u>https://doi.org/10.1143/</u> JJAP.45.5186
- [25] M. Ogita, K. Higo, Y. Nakanishi and Y. Hatanaka, Ga₂O₃ thin film for oxygen sensor at high temperature, Appl. Surf. Sci., 2001, vol. 175-176, pp. 721–725. <u>https://doi.org/10.1016/S0169-4332(01)00080-0</u>
- [26] C. Baban, Y. Toyoda and M. Ogita, Oxygen sensing at high temperatures using Ga₂O₃ films, Thin Solid Films., 2005, vol. 484, no. 1-2, pp. 369–373. <u>https://doi.org/10.1016/j.tsf.2005.03.001</u>

- [27] Y. Li, A. Trinchi, W. Wlodarski, K. Galatsis and K. Kalantar-Zadeh, *Investigation of the oxygen* gas sensing performance of Ga₂O₃ thin films with different dopants, Sensors Actuators, B Chem., 2003, vol. 93, no. 1-3, pp. 431–434. <u>https://doi.org/10.1016/S0925-4005(03)00171-0</u>
- [28] A. Trinchi, S. Kaciulis, L. Pandolfi, M.K. Ghantasala, Y.X. Li, W. Wlodarski, S. Viticoli, E. Comini and G. Sberveglieri, *Characterization* of Ga₂O₃ based MRISiC hydrogen gas sensors, Sensors Actuators B Chem., 2004, vol. 103, no. 1-2, pp. 129–135. <u>https://doi.org/10.1016/j.snb.2004.04.112</u>
- [29] J. Frank, M. Fleischer, H. Meixner and A. Feltz, *Enhancement of sensitivity and conductivity of semiconducting Ga₂O₃ gas sensors by doping with SnO₂*, Sensors Actuators B Chem., 1998, vol. 49, no. 1-2, pp. 110–114. <u>https://doi.org/10.1016/</u> <u>S0925-4005(98)00094-X</u>
- [30] V. Balasubramani, A.N. Ahamed, S. Chandraleka, K.K. Kumar, M.R. Kuppusamy and T.M. Sridhar, *Highly Sensitive and Selective H₂S Gas Sensor Fabricated with* β-Ga₂O₃/rGO, ECS J. Solid State Sci. Technol., 2020, vol. 9, no. 5, art. 055009. <u>https://doi.org/10.1149/2162-8777/ab9a18</u>
- [31] R. Pohle, E. Weisbrod and H. Hedler, *Enhancement of MEMS-based Ga₂O₃ Gas Sensors by Surface Modifications*, Procedia Eng., 2016, vol. 168, pp. 211–215. <u>https://doi.org/10.1016/j.proeng.2016.11.164</u>
- [32] Q.C. Bui, L. Largeau, M. Morassi, N. Jegenyes,
 O. Mauguin, L. Travers, X. Lafosse, C. Dupuis,
 J.C. Harmand, M. Tchernycheva and N. Gogneau,
 GaN/Ga₂O₃ core/shell nanowires growth:
 Towards high response gas sensors, Appl. Sci.,
 2019, vol. 9, no. 17, pp. 1–14.
 https://doi.org/10.3390/app9173528
- [33] Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani and Y. Li, O₂ and CO sensing of Ga₂O₃ multiple nanowire gas sensors, Sensors Actuators B Chem., 2008, vol. 129, pp. 666–670. https://doi.org/10.1016/j.snb.2007.09.055
- [34] C. Jin, S. Park, H. Kim and C. Lee, Ultrasensitive multiple networked Ga₂O₃-core/ZnO- shell nanorod gas sensors, Sensors Actuators B Chem., 2012, vol. 161, no. 1, pp. 223–228. <u>https://doi.org/10.1016/j.snb.2011.10.023</u>
- [35] L. Mazeina, F.K. Perkins, V.M. Bermudez, S.P. Arnold and S.M. Prokes, *Functionalized Ga₂O₃* nanowires as active material in room temperature capacitance-based gas sensors, Langmuir, 2010, vol. 26, no. 16, pp. 13722–13726. https://doi.org/10.1021/la101760k

- [36] A. Afzal, β-Ga₂O₃ nanowires and thin films for metal oxide semiconductor gas sensors: Sensing mechanisms and performance enhancement strategies, J. Mater., 2019, vol. 5, no. 1, pp. 542–557. https://doi.org/10.1016/j.jmat.2019.08.003
- [37] Y.K. Frodason, K.M. Johansen, L. Vines and J.B. Varley, *Self-trapped hole and impurity-related broad luminescence in* β-Ga₂O₃, J. Appl. Phys., 2020, vol. 127, no. 7, art. 075701. https://doi.org/10.1063/1.5140742
- [38] H. Tang, N. He, Z. Zhu, M. Gu, B. Liu, J. Xu, M. Xu, L. Chen, J. Liu and X. Ouyang, *Temperature-dependence of X-ray excited luminescence of* β-Ga₂O₃ single crystals, Appl. Phys. Lett., 2019, vol. 115, no. 7, art. 071904. <u>https://doi.org/10.1063/1.5110535</u>
- [39] X. Yu, H. Cui, M. Zhu, Z. Xia and Q. Sai, *Influence of annealing treatment on the luminescent properties of Ta*:β-Ga₂O₃ single crystal, Chinese Phys. B., 2019, vol. 28, no. 7, art. 077801. https://doi.org/10.1088/1674-1056/28/7/077801
- [40] T.T. Huynh, E. Chikoidze, C.P. Irvine, M. Zakria, Y. Dumont, F.H. Teherani, E. V Sandana, P. Bove, D.J. Rogers, M.R. Phillips and C. Ton-That, *Red luminescence in H-doped* β-*Ga*₂*O*₃, Phys. Rev. Mat., 2020, vol. 4, art. 085201. <u>https://doi.org/</u> <u>10.1103/PhysRevMaterials.4.085201</u>
- [41] A. Luchechko, V. Vasyltsiv, L. Kostyk,
 O. Tsvetkova and B. Pavlyk, *Thermally* stimulated luminescence and conductivity of β-Ga₂O₃ crystals, J. Nano- Electron. Phys., 2019, vol. 11, no. 3, pp. 1–7. <u>https://doi.org/10.21272/jnep.11(3).03035</u>
- [42] A.Y. Polyakov, N.B. Smirnov, I. V. Schemerov, A.V. Chernykh, E.B. Yakimov, A.I. Kochkova, A.N. Tereshchenko and S.J. Pearton, Electrical Properties, *Deep Levels and Luminescence Related to Fe in Bulk Semi-Insulating* β-Ga₂O₃ *Doped with Fe*, ECS J. Solid State Sci. Technol., 2019, vol. 8, no. 7, pp. Q3091–Q3096. https://doi.org/10.1149/2.0171907jss
- [43] A.Y. Polyakov, N.B. Smirnov, I. V. Shchemerov,
 E.B. Yakimov, S.J. Pearton, F. Ren, A. V. Chernykh,
 D. Gogova and A.I. Kochkova, *Electrical Properties, Deep Trap and Luminescence Spectra in Semi-Insulating, Czochralski* β-Ga₂O₃ (Mg), ECS J. Solid State Sci. Technol., 2019, vol.
 8, no. 7, pp. Q3019–Q3023. https://doi.org/10.1149/2.0041907jss
- [44] Z. Gao, L. Yu, X. Man, J. Zhong, Q. Guo and Y. Zou, The structure and luminescence properties of Mn²⁺/Eu²⁺/Er³⁺-doped MgO-Ga₂O₃-SiO₂ glasses and glass-ceramics, Luminescence,

2019, vol. 34, no. 8, pp. 830–837. https://doi.org/10.1002/bio.3678

- [45] J. Ueda, A. Hashimoto and S. Tanabe, Orange Persistent Luminescence and Photodarkening Related to Paramagnetic Defects of Nondoped CaO-Ga₂O₃-GeO₂ Glass, J. Phys. Chem. C., 2019, vol. 123, no. 49, pp. 29946–29953. https://doi.org/10.1021/acs.jpcc.9b07638
- [46] J. Jiang, J. Zhang, J. Li and D. Xu, *Red-light* emission of Li-doped Ga₂O₃ one-dimensional nanostructures and the luminescence mechanism, Chem. Phys. Lett., 2019, vol. 719, pp. 8–11. <u>https://doi.org/10.1016/j.cplett.2019.01.003</u>
- [47] J. Jiang, J. Zhang and Z. Song, Influence of Zn doping on the morphology and luminescence of Ga₂O₃ low-dimensional nanostructures, J. Lumin., 2020, vol. 221, art. 117048. <u>https://doi.org/10.1016/j.jlumin.2020.117048</u>
- [48] J. Yang, F. Ren, M. Tadjer, S.J. Pearton and A. Kuramata, 2300V Reverse Breakdown Voltage Ga₂O₃ Schottky Rectifiers, ECS J. Solid State Sci. Technol., 2018, vol. 7, pp. Q92–Q96. https://doi.org/10.1149/2.0241805jss
- [49] C. Hou, R.A. Makin, K.R. York, S.M. Durbin, J.I. Scott, R.M. Gazoni, R.J. Reeves and M.W. Allen, *High-temperature (350 °C) oxidized iridium Schottky contacts on* β-Ga₂O₃, Appl. Phys. Lett., 2019, vol. 114, art. 233503. <u>https://doi.org/10.1063/</u> <u>1.5099126</u>
- [50] E. Swinnich, M.N. Hasan, K. Zeng, Y. Dove, U. Singisetti, B. Mazumder and J.H. Seo, *Flexible* β-*Ga*₂O₃ *Nanomembrane Schottky Barrier Diodes*, Adv. Electron. Mater., 2019, vol. 5, no. 3, art. 1800714. <u>https://doi.org/10.1002/</u> aelm.201800714
- [51] K. Sasaki, A. Kuramata, T. Masui, E.G. Víllora, K. Shimamura and S. Yamakoshi, *Device-quality* β-Ga₂O₃ epitaxial films fabricated by ozone molecular beam epitaxy, Appl. Phys. Express., 2012, vol. 5, no. 3, pp. 5–8. https://doi.org/10.1143/APEX.5.035502
- [52] T. Harada, S. Ito and A. Tsukazaki, *Electric dipole effect in PdCoO₂/β-Ga₂O₃ Schottky diodes for high-temperature operation*, Sci. Adv., 2019, vol. 5, no. 10, pp. 1–7. <u>https://doi.org/10.1126/sciadv.aax5733</u>
- [53] X. Huang, F. Liao, L. Li, X. Liang, Q. Liu, C. Zhang and X. Hu, 3.4 kV Breakdown Voltage Ga₂O₃ Trench Schottky Diode with Optimized Trench Corner Radius, ECS J. Solid State Sci. Technol., 2020, vol. 9, no. 4, art. 045012. https://doi.org/10.1149/2162-8777/ab8b4a
- [54] S. Müller, L. Thyen, D. Splith, A. Reinhardt, H. von Wenckstern and M. Grundmann,

High-Quality Schottky Barrier Diodes on β-*Gallium Oxide Thin Films on Glass Substrate*, ECS J. Solid State Sci. Technol., 2019, vol. 8, pp. Q3126–Q3132. <u>https://doi.org/10.1149/</u> 2.0241907jss

- [55] E. Farzana, Z. Zhang, P.K. Paul, A.R. Arehart and S.A. Ringel, *Influence of metal choice on (010)* β-Ga₂O₃ Schottky diode properties, Appl. Phys. Lett., 2017, vol. 110, art. 202102. https://doi.org/10.1063/1.4983610
- [56] K. Jiang, L.A.M. Lyle, E. Favela, D. Moody, T. Lin, K.K. Das, A. Popp, Z. Galazka, G. Wagner and L.M. Porter, *Electrical Properties of (100)* β-Ga₂O₃ Schottky Diodes with Four Different Metals, ECS Trans., 2019, vol. 92, no. 7, pp. 71–78. https://doi.org/10.1149/09207.0071ecst
- [57] M. Xian, C. Fares, F. Ren, B.P. Gila, Y.-T. Chen, Y.-T. Liao, M. Tadjer and S.J. Pearton, *Effect of thermal annealing for W/β-Ga₂O₃ Schottky diodes up to 600 °C*, J. Vac. Sci. Technol. B., 2019, vol. 37, art. 061201. <u>https://doi.org/10.1116/1.5125006</u>
- [58] C. Fares, F. Ren and S.J. Pearton, Temperature-Dependent Electrical Characteristics of β-Ga₂O₃ Diodes with W Schottky Contacts up to 500 °C, ECS J. Solid State Sci. Technol., 2019, vol. 8, pp. Q3007–Q3012. <u>https://doi.org/10.1149/</u> 2.0011907jss
- [59] P.R.S. Reddy, V. Janardhanam, K.H. Shim, V.R. Reddy, S.N. Lee, S.J. Park and C.J. Choi, *Temperature-dependent Schottky barrier* parameters of Ni/Au on n-type (001) β-Ga₂O₃ Schottky barrier diode, Vacuum, 2020, vol. 171, art. 109012. <u>https://doi.org/10.1016/</u> j.vacuum.2019.109012
- [60] Z.A. Jian, S. Mohanty and E. Ahmadi, *Temperature-dependent current-voltage characteristics of* β-Ga₂O₃ *trench Schottky barrier diodes*, Appl. Phys. Lett., 2020, vol. 116, pp. 3–8. <u>https://doi.org/10.1063/5.0002520</u>
- [61] W. Li, D. Saraswat, Y. Long, K. Nomoto, D. Jena and H.G. Xing, *Near-ideal reverse leakage current and practical maximum electric field in* β-Ga₂O₃ Schottky barrier diodes, Appl. Phys. Lett., 2020, vol. 116, art. 192101. <u>https://doi.org/10.1063/5.0007715</u>
- [62] M. Kasu, K. Hanada, T. Moribayashi,
 A. Hashiguchi, T. Oshima, T. Oishi, K. Koshi,
 K. Sasaki, A. Kuramata and O. Ueda, *Relationship between crystal defects and leakage current in* β-Ga₂O₃ Schottky barrier *diodes*, Jpn. J. Appl. Phys., 2016, vol. 55, no. 12,
 art. 1202BB. https://doi.org/10.7567/JJAP.55.1202BB

- [63] M. Kasu, T. Oshima, K. Hanada, T. Moribayashi, A. Hashiguchi, T. Oishi, K. Koshi, K. Sasaki, A. Kuramata and O. Ueda, *Crystal defects* observed by the etch-pit method and their effects on Schottky-barrier-diode characteristics on (201) β-Ga₂O₃, Jpn. J. Appl. Phys., 2017, vol. 56, no. 9, art. 091101. <u>https://doi.org/10.7567/</u> JJAP.56.091101
- [64] T. Oshima, A. Hashiguchi, T. Moribayashi, K. Koshi, K. Sasaki, A. Kuramata, O. Ueda, T. Oishi and M. Kasu, *Electrical properties of Schottky barrier diodes fabricated on (001)* β-Ga₂O₃ substrates with crystal defects, Jpn. J. Appl. Phys., 2017, vol. 56, no. 8, art. 086501. <u>https://doi.org/10.7567/JJAP.56.086501</u>
- [65] D. Khan, D. Gajula, S. Okur, G.S. Tompa and G. Koley, β-Ga₂O₃ Thin Film Based Lateral and Vertical Schottky Barrier Diode, ECS J. Solid State Sci. Technol., 2019, vol. 8, pp. Q106–Q110. https://doi.org/10.1149/2.0211906jss
- [66] R. Lingaparthi, K. Sasaki, Q.T. Thieu,
 A. Takatsuka, F. Otsuka, S. Yamakoshi and
 A. Kuramata, *Surface related tunneling leakage* in β-Ga₂O₃ (001) vertical Schottky barrier diodes, Appl. Phys. Express., 2019, vol. 12, no. 7, art. 074008. <u>https://doi.org/10.7567/1882-0786/</u> ab2824
- [67] S. Modak, L. Chernyak, S. Khodorov, I. Lubomirsky, J. Yang, F. Ren and S.J. Pearton, Impact of Electron Injection and Temperature on Minority Carrier Transport in Alpha-Irradiated β-Ga₂O₃ Schottky Rectifiers, ECS J. Solid State Sci. Technol., 2019, vol. 8, no. 7, pp. Q3050– Q3053. <u>https://doi.org/10.1149/2.0101907jss</u>
- [68] K. Konishi, K. Goto, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi and M. Higashiwaki, *1-kV vertical Ga₂O₃ field-plated Schottky barrier diodes*, Appl. Phys. Lett., 2017, vol. 110, art. 103506. <u>https://doi.org/10.1063/1.4977857</u>
- [69] X. Lu, X. Zhang, H. Jiang, X. Zou, K.M. Lau and G. Wang, Vertical β-Ga₂O₃ Schottky Barrier Diodes with Enhanced Breakdown Voltage and High Switching Performance, Phys. Status Solidi Appl. Mater. Sci., 2020, vol. 217, no. 3, art. 1900497. https://doi.org/10.1002/pssa.201900497
- [70] S. Luan, L. Dong, X. Ma and R. Jia, *The further investigation of N-doped* β-Ga₂O₃ *thin films with native defects for Schottky-barrier diode*,
 J. Alloys Compd.,2020, vol. 812, no. 5, art. 152026. https://doi.org/10.1016/j.jallcom.2019.152026
- [71] X. Lu, L. Zhou, L. Chen, X. Ouyang, H. Tang,
 B. Liu and J. Xu, X-ray Detection Performance of Vertical Schottky Photodiodes Based on a Bulk β-Ga₂O₃ Substrate Grown by an EFG Method,

ECS J. Solid State Sci. Technol., 2019, vol. 8, no. 7, pp. Q3046–Q3049. <u>https://doi.org/10.1149/</u>2.0071907jss

- [72] L. Zhou, X. Lu, L. Chen, X. Ouyang, B. Liu, J. Xu and H. Tang, *Leakage Current by Poole– Frenkel Emission in Pt Schottky Contacts on ()* β-Ga₂O₃ Grown by Edge-Defined Film-Fed Growth, ECS J. Solid State Sci. Technol., 2019, vol. 8, no. 7, pp. Q3054–Q3057. <u>https://doi.org/10.1149/2.0111907jss</u>
- [73] P.E. Raad, P.L. Komarov, M.J. Tadjer, J. Yang, F. Ren, S.J. Pearton and A. Kuramata, *Thermoreflectance Temperature Mapping of Ga₂O₃ Schottky Barrier Diodes*, ECS Trans., 2019, vol. 89, no. 5, pp. 3-7. https://doi.org/10.1149/08905.0003ecst
- [74] M. Oda, R. Tokuda, H. Kambara, T. Tanikawa, T. Sasaki and T. Hitora, Schottky barrier diodes of corundum-structured gallium oxide showing on-resistance of 0.1mocm² grown by MIST EPITAXY®, Appl. Phys. Express., 2016, vol. 9, no. 2, art. 021101. <u>https://doi.org/10.7567/</u> <u>APEX.9.021101</u>
- [75] J. Yang, S. Ahn, F. Ren, S.J. Pearton, S. Jang and A. Kuramata, *High breakdown voltage (-201)* β-Ga₂O₃ Schottky rectifiers, IEEE Electron Device Lett., 2017, vol. 38, no. 7, pp. 906–909. <u>https://doi.org/10.1109/LED.2017.2703609</u>
- [76] C. Zhou, Q. Ai, X. Chen, X. Gao, K. Liu and D. Shen, Ultraviolet photodetectors based on wide bandgap oxide semiconductor films, Chinese Phys. B., 2019, vol. 28, no. 4, art. 048503. https://doi.org/10.1088/1674-1056/28/4/048503
- [77] Y. Qin, S. Long, H. Dong, Q. He, G. Jian, Y. Zhang, X. Hou, P. Tan, Z. Zhang, H. Lv, Q. Liu and M. Liu, *Review of deep ultraviolet photodetector based on gallium oxide*, Chinese Phys. B., 2019, vol. 28, no. 1, art. 018501. <u>https://doi.org/10.1088/</u> <u>1674-1056/28/1/018501</u>
- [78] M. Pavesi, F. Fabbri, F. Boschi, G. Piacentini,
 A. Baraldi, M. Bosi, E. Gombia, A. Parisini and
 R. Fornari, ε-Ga₂O₃ epilayers as a material for solar-blind UV photodetectors, Mater. Chem.
 Phys., 2018, vol. 205, pp. 502–507. <u>https://doi.org/10.1016/j.matchemphys.2017.11.023</u>
- [79] D. Guo, Z. Wu, P. Li, Y. An, H. Liu, X. Guo, H. Yan, G. Wang, C. Sun, L. Li and W. Tang, *Fabrication of β-Ga₂O₃ thin films and solar-blind photodetectors by laser MBE technology*, Opt. Mater. Express., 2014, vol. 4, no. 5, pp. 1067-1076. https://doi.org/10.1364/ome.4.001067
- [80] Y.F. Zhang, X.H. Chen, Y. Xu, F.F. Ren, S.L. Gu, R. Zhang, Y.D. Zheng and J.D. Ye, *Transition of photoconductive and photovoltaic operation*

modes in amorphous Ga_2O_3 -based solar-blind detectors tuned by oxygen vacancies, Chinese Phys. B., 2019, vol. 28, no. 2, art. 028501. https://doi.org/10.1088/1674-1056/28/2/028501

- [81] X. Chen, K. Liu, Z. Zhang, C. Wang, B. Li,
 H. Zhao, D. Zhao and D. Shen, Self-Powered Solar-Blind Photodetector with Fast Response Based on Au/β-Ga₂O₃ Nanowires Array Film Schottky Junction, ACS Appl. Mater. Interfaces., 2016, vol. 8, no. 6, pp. 4185–4191. https://doi.org/10.1021/acsami.5b11956
- [82] D.Y. Guo, K. Chen, S.L. Wang, F.M. Wu, A.P. Liu, C.R. Li, P.G. Li, C.K. Tan and W.H. Tang, Self-Powered Solar-Blind Photodetectors Based on α/β Phase Junction of Ga₂O₃, Phys. Rev. Appl., 2020, vol. 13, art. 024051. <u>https://doi.org/10.1103/ PhysRevApplied.13.024051</u>
- [83] R. Suzuki, S. Nakagomi, Y. Kokubun, N. Arai and S. Ohira, Enhancement of responsivity in solarblind β-Ga₂O₃ photodiodes with a Au Schottky contact fabricated on single crystal substrates by annealing, Appl. Phys. Lett., 2009, vol. 94, no. 22, art. 222102. <u>https://doi.org/10.1063/1.3147197</u>
- [84] S. Nakagomi, T. Momo, S. Takahashi and Y. Kokubun, *Deep ultraviolet photodiodes based* on β-Ga₂O₃/SiC heterojunction, Appl. Phys. Lett., 2013, vol. 103, no. 7, art. 072105. <u>https://doi.org/10.1063/1.4818620</u>
- [85] W.Y. Kong, G.A. Wu, K.Y. Wang, T.F. Zhang, Y.F. Zou, D.D. Wang and L.B. Luo, Graphene-β-Ga₂O₃ Heterojunction for Highly Sensitive Deep UV Photodetector Application, Adv. Mater., 2016, vol. 28, no. 48, pp. 10725–10731. https://doi.org/10.1002/adma.201604049
- [86] X.H. Chen, Y.T. Chen, F.F. Ren, S.L. Gu, H.H. Tan, C. Jagadish and J.D. Ye, *Band alignment and band bending at* β-Ga₂O₃/ZnO n-n isotype *hetero-interface*, Appl. Phys. Lett., 2019, vol. 115, no. 20, art. 202101. <u>https://doi.org/10.1063/</u> <u>1.5126325</u>
- [87] M. Chen, J. Ma, P. Li, H. Xu and Y. Liu, Zero-biased deep ultraviolet photodetectors based on graphene/cleaved (100) Ga₂O₃ heterojunction, Opt. Express, 2019, vol. 27, no. 6, pp. 8717-8726. <u>https://doi.org/10.1364/</u> <u>oe.27.008717</u>
- [88] Y.H. An, D.Y. Guo, S.Y. Li, Z.P. Wu, Y.Q. Huang, P.G. Li, L.H. Li and W.H. Tang, *Influence of* oxygen vacancies on the photoresponse of β-Ga₂O₃/SiC n-n type heterojunctions, J. Phys. D. Appl. Phys., 2016, vol. 49, no. 28, art. 285111. https://doi.org/10.1088/0022-3727/49/28/285111
- [89] F. Alema, B. Hertog, P. Mukhopadhyay, Y. Zhang, A. Mauze, A. Osinsky, W. V. Schoenfeld, J.S.

Speck and T. Vogt, *Solar blind Schottky photodiode based on an MOCVD-grown homoepitaxial* β-*Ga*₂*O*₃ *thin film*, APL Mater., 2019, vol. 7, art. 022527. <u>https://doi.org/10.1063/</u> <u>1.5064471</u>

- [90] T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira and S. Fujita, Vertical solar-blind deepultraviolet schottky photodetectors based on β-Ga₂O₃ substrates, Appl. Phys. Express, 2008, vol. 1, no. 1, art. 011202. <u>https://doi.org/10.1143/</u> <u>APEX.1.011202</u>
- [91] S. Cui, Z. Mei, Y. Zhang, H. Liang and X. Du, *Room-Temperature Fabricated Amorphous Ga₂O₃ High-Response-Speed Solar-Blind Photodetector on Rigid and Flexible Substrates*, Adv. Opt. Mater., 2017, vol. 5, no. 19, art. 1700454. <u>https://doi.org/10.1002/adom.201700454</u>
- [92] W. Tian, C. Zhi, T. Zhai, S. Chen, X. Wang, M. Liao, D. Golberg and Y. Bando, *In-doped* Ga₂O₃ nanobelt based photodetector with high sensitivity and wide-range photoresponse, J. Mater. Chem., 2012, vol. 22, pp. 17984–17991. https://doi.org/10.1039/c2jm33189f
- [93] S. Oh, M.A. Mastro, M.J. Tadjer and J. Kim, Solar-Blind Metal-Semiconductor-Metal Photodetectors Based on an Exfoliated β-Ga₂O₃ Micro-Flake, ECS J. Solid State Sci. Technol., 2017, vol. 6, no. 8, pp. Q79–Q83. https://doi.org/10.1149/2.0231708jss
- [94] J. Kim, S. Oh, J. Kim, F. Ren and S.J. Pearton, Quasi-two-dimensional β-gallium oxide solarblind photodetectors with ultrahigh responsivity, J. Mater. Chem. C., 2016, vol. 4, pp. 9245–9250. <u>https://doi.org/10.1039/c6tc02467j</u>
- [95] M. Zhong, Z. Wei, X. Meng, F. Wu and J. Li, *High-performance single crystalline UV photodetectors of* β-*Ga*₂*O*₃, J. Alloys Compd., 2015, vol. 619, pp. 572–575. https://doi.org/10.1016/j.jallcom.2014.09.070
- [96] Y.P. Qian, D.Y. Guo, X.L. Chu, H.Z. Shi, W.K. Zhu, K. Wang, X.K. Huang, H. Wang, S.L. Wang, P.G. Li, X.H. Zhang and W.H. Tang, *Mg-doped p-type* β-Ga₂O₃ thin film for solar-blind ultraviolet photodetector, Mater. Lett., 2017, vol. 209, pp. 558–561. <u>https://doi.org/10.1016/</u> j.matlet.2017.08.052
- [97] B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang and D. Zhao, Solar-Blind Avalanche Photodetector Based on Single ZnO-Ga₂O₃ Core-Shell Microwire, Nano Lett., 2015, vol. 15, no. 6, pp. 3988–3993. <u>https://doi.org/10.1021/</u> acs.nanolett.5b00906
- [98] S. Ahn, F. Ren, S. Oh, Y. Jung, J. Kim, M.A. Mastro, J.K. Hite, C.R. Eddy and S.J. Pearton,

Elevated temperature performance of Si-implanted solar-blind β -Ga₂O₃ photodetectors, J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom., 2016, vol. 34, no. 4, art. 041207. https://doi.org/10.1116/1.4948361

- [99] B.R. Tak, M. Garg, A. Kumar, V. Gupta and R. Singh, Gamma Irradiation Effect on Performance of β-Ga₂O₃ Metal-Semiconductor-Metal Solar-Blind Photodetectors for Space Applications, ECS J. Solid State Sci. Technol., 2019, vol. 8, no. 7, pp. Q3149–Q3153. https://doi.org/10.1149/2.0291907jss
- [100] J. Xu, W. Zheng and F. Huang, Gallium oxide solar-blind ultraviolet photodetectors: a review, J. Mater. Chem., 2019, vol. 7, pp. 8753–8770. https://doi.org/10.1039/C9TC02055A
- [101] D.Y. Lee and T.Y. Tseng, Forming-free resistive switching behaviors in Cr-embedded Ga₂O₃ thin film memories, J. Appl. Phys., 2011, vol. 110, art. 114117. <u>https://doi.org/10.1063/1.3665871</u>
- [102] J. Hou, R. Guo, J. Su, Y. Du, Z. Lin, J. Zhang, Y. Hao and J. Chang, *Multilevel oxygen*vacancy conductive filaments in β-Ga₂O₃ based resistive random access memory, Phys. Chem. Chem. Phys., 2021, vol. 23, pp. 5975–5983. <u>https://doi.org/10.1039/d0cp06239a</u>
- [103] C.H. Pan, T.C. Chang, T.M. Tsai, K.C. Chang, P.H. Chen, S.W. Chang-Chien, M.C. Chen, H.C. Huang, H. Wu, N. Deng, H. Qian and S.M. Sze, *Engineering interface-type resistance switching based on forming current compliance in ITO/Ga₂O₃:ITO/TiN resistance random access memory: Conduction mechanisms, temperature effects, and electrode influence*, Appl. Phys. Lett, 2016, vol. 109, art. 183509. https://doi.org/10.1063/1.4966181
- [104] X.B. Yan, H. Hao, Y.F. Chen, Y.C. Li and W. Banerjee, *Highly transparent bipolar* resistive switching memory with In-Ga-Zn-O semiconducting electrode in In-Ga-Zn-O/ Ga₂O₃/In-Ga-Zn-O structure, Appl. Phys. Lett., 2014, vol. 105, no. 9, art. 093502. https://doi.org/10.1063/1.4894521
- [105] Y.S. Zhi, P.G. Li, P.C. Wang, D.Y. Guo, Y.H. An, Z.P. Wu, X.L. Chu, J.Q. Shen, W.H. Tang and C.R. Li, *Reversible transition between bipolar* and unipolar resistive switching in Cu₂O/ Ga₂O₃ binary oxide stacked layer, AIP Adv., 2016, vol. 6, no. 1, art. 015215. <u>https://doi.org/10.1063/1.4941061</u>
- [106] C.C. Yang, J.Q. Huang, K.Y. Chen, P.H. Chiu, H.T. Vu and Y.K. Su, *Effect of Oxygen Concentration Ratio on a Ga*₂O₃-Based Resistive Random

Access Memory, IEEE Access., 2019, vol. 7, pp. 175186–175191. <u>https://doi.org/10.1109/</u> ACCESS.2019.2948423

- [107] K.J. Gan, P.T. Liu, D.B. Ruan, C.C. Hsu, Y.C. Chiu and S.M. Sze, *Effect of Annealing Treatment on Performance of Ga₂O₃ Conductive-Bridging Random-Access Memory*, J. Electron. Mater., 2020, vol. 49, pp. 6817–6822. https://doi.org/10.1007/s11664-020-08177-9
- [108] K. Zheng, X.W. Sun, J.L. Zhao, Y. Wang, H.Y. Yu, H. V. Demir and K.L. Teo, An indium-free transparent resistive switching random access memory, IEEE Electron Device Lett., 2011, vol. 32, no. 6, pp. 797–799. <u>https://doi.org/10.1109/ LED.2011.2126017</u>
- [109] K.J. Gan, P.T. Liu, Y.C. Chiu, D.B. Ruan, T.C. Chien and S.M. Sze, *TAOS based Cu/TiW/IGZO/Ga₂O₃/Pt bilayer CBRAM for low-power display technology*, Surf. Coatings Technol., 2018, vol. 354, pp. 169–174. <u>https://doi.org/10.1016/j.surfcoat.2018.08.093</u>
- [110] X. Shen, L. Zhang, L. Liu, Y. An, Z. Gao and P. Guo, Bipolar resistive switching of Pt/Ga₂O₃. *SiC/Pt thin film with ultrahigh OFF/ON* resistance ratios, Nanotechnology, 2020, vol. 31, art. 225206. <u>https://doi.org/10.1088/1361-6528/ab758d</u>
- [111] T.F. Weng, M.S. Ho, C. Sivakumar, B. Balraj and P.F. Chung, VLS growth of pure and Au decorated β-Ga₂O₃ nanowires for room temperature CO gas sensor and resistive memory applications, Appl. Surf. Sci., 2020, vol. 533, art. 147476. <u>https://doi.org/10.1016/j.apsusc.2020.147476</u>
- [112] C.W. Hsu and L.J. Chou, *Bipolar resistive switching of single gold-in-Ga₂O₃ nanowire*, Nano Lett., 2012, vol. 12, no. 8, pp. 4247–4253. <u>https://doi.org/10.1021/nl301855u</u>
- [113] J.T.H. Tsai, C.H. Hsu, C.Y. Hsu and C.S. Yang, Rapid synthesis of gallium oxide resistive random access memory by atomic force microscopy local anodic oxidation, Electron. Lett., 2013, vol. 49, no. 8, pp. 554–555. <u>https://doi.org/10.1049/el.2013.0639</u>
- [114] B. Bai, H. Wang, Y. Li, Y. Hao, B. Zhang,
 B. Wang, Z. Wang, H. Yang, Q. Gao, C. Lü,
 Q. Zhang and X. Yan, *Charge trapping memory device based on the Ga₂O₃ films as trapping and blocking layer*, Chinese Phys. B., 2019, vol. 28, no. 10, art. 106802. <u>https://doi.org/10.1088/1674-1056/ab3e62</u>
- [115] D. Madadi and A.A. Orouji, $A \beta$ - $Ga_2O_3MESFET$ to Amend the Carrier Distribution by Using a Tunnel Diode, IEEE Trans. Device Mater.

Reliab., 2021, vol. 21, no. 1, pp. 26–32. https://doi.org/10.1109/TDMR.2020.3046530

- [116] K. Tetzner, O. Hilt, A. Popp, S. Bin Anooz and J. Würfl, *Challenges to overcome breakdown limitations in lateral* β-Ga₂O₃ MOSFET devices, Microelectron. Reliab., 2020, vol. 114, art. 113951. <u>https://doi.org/10.1016/j.microrel.2020.113951</u>
- [117] A.J. Green, K.D. Chabak, M. Baldini, N. Moser, R. Gilbert, R.C. Fitch, G. Wagner, Z. Galazka, J. McCandless, A. Crespo, K. Leedy and G.H. Jessen, β-Ga₂O₃ MOSFETs for radio frequency operation, IEEE Electron Device Lett., 2017, vol. 38, no. 6, pp. 790–793. <u>https://doi.org/10.1109/ LED.2017.2694805</u>
- [118] R. Kotecha, W. Metzger, B. Mather, S. Narumanchi and A. Zakutayev, *Modeling and Analysis of Gallium Oxide Vertical Transistors*, ECS J. Solid State Sci. Technol., 2019, vol. 8, no. 7, pp. Q3202–Q3205. <u>https://doi.org/10.1149/</u> <u>2.0401907jss</u>
- [119] Y. Lv, X. Zhou, S. Long, Y. Wang, X. Song,
 X. Zhou, G. Xu, S. Liang, Z. Feng, S. Cai, X. Fu,
 A. Pu and M. Liu, *Enhancement-Mode* β-Ga₂O₃ Metal-Oxide-Semiconductor Field-Effect Transistor with High Breakdown Voltage over 3000 V Realized by Oxygen Annealing, Phys. Status Solidi - Rapid Res. Lett., 2020, vol. 14, no.
 3, art. 1900586. <u>https://doi.org/10.1002/</u> pssr.201900586
- [120] J. Park and S.-M. Hong, Simulation Study of Enhancement Mode Multi-Gate Vertical Gallium Oxide MOSFETs, ECS J. Solid State Sci. Technol., 2019, vol. 8, no. 7, pp. Q3116–Q3121. https://doi.org/10.1149/2.0181907jss
- [121] J. Kim, M.A. Mastro, M.J. Tadjer and J. Kim, *Heterostructure WSe₂-Ga₂O₃ Junction Field-Effect Transistor for Low-Dimensional High-Power Electronics*, ACS Appl. Mater. Interfaces., 2018, vol. 10, no. 35, pp. 29724–29729. <u>https://doi.org/10.1021/</u> acsami.8b07030
- [122] G.T. Dang, T. Kawaharamura, M. Furuta and M.W. Allen, *Mist-CVD Grown Sn-Doped* α-Ga₂O₃ MESFETs, IEEE Trans. Electron Devices., 2015, vol. 62, no. 11, pp. 3640–3644. <u>https://doi.org/10.1109/TED.2015.2477438</u>
- [123] J. Kim, M.A. Mastro, M.J. Tadjer and J. Kim, Quasi-two-dimensional h-BN / β-Ga₂O₃ heterostructure metal – insulator – semiconductor field-effect transistor, ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 25, pp. 21322–21327. <u>https://doi.org/10.1021/</u> acsami.7b04374

- [124] N. Yadava and R.K. Chauhan, *RF Performance Investigation of* β-Ga₂O₃/Graphene and β-Ga₂O₃/Black Phosphorus Heterostructure MOSFETs, ECS J. Solid State Sci. Technol., 2019, vol. 8, no. 7, pp. Q3058–Q3063. https://doi.org/10.1149/2.0131907jss
- [125] Z. Xia, C. Joishi, S. Krishnamoorthy, S. Bajaj, Y. Zhang, M. Brenner, S. Lodha and S. Rajan, *Delta Doped* β-Ga₂O₃ *Field Effect Transistors with Regrown Ohmic Contacts*, IEEE Electron Device Lett., 2018, vol. 39, no. 4, pp. 568–571. <u>https://doi.org/10.1109/LED.2018.2805785</u>
- [126] S. Kim and J. Kim, Electrical Properties of Thermally Annealed β-Ga₂O₃ Metal-Semiconductor Field-Effect Transistors with Pt/Au Schottky Contacts, ECS J. Solid State Sci. Technol., 2019, vol. 8, no. 7, pp. Q3122–Q3125. https://doi.org/10.1149/2.0231907jss
- [127] K. Matsuzaki, H. Hiramatsu, K. Nomura,
 H. Yanagi, T. Kamiya, M. Hirano and H. Hosono, *Growth, structure and carrier transport properties of Ga₂O₃ epitaxial film examined for transparent field-effect transistor*, Thin Solid
 Films., 2006, vol. 496, no. 1, pp. 37–41.
 https://doi.org/10.1016/j.tsf.2005.08.187
- [128] Y. Zhang, C. Joishi, Z. Xia, M. Brenner, S. Lodha and S. Rajan, *Demonstration of* β -($Al_xGa_{1,x}$)₂ O_3 / Ga_2O_3 double heterostructure field effect transistors, Appl. Phys. Lett., 2018, vol. 112, no. 23, art. 233503. https://doi.org/10.1063/1.5037095
- [129] E. Ahmadi, O.S. Koksaldi, X. Zheng, T. Mates, Y. Oshima, U.K. Mishra and J.S. Speck, Demonstration of β - $(Al_xGa_{1-x})_2O_3/\beta$ - Ga_2O_3 modulation doped field-effect transistors with Ge as dopant grown via plasma-assisted molecular beam epitaxy, Appl. Phys. Express., 2017, vol. 10, no. 7, art. 071101. https://doi.org/10.7567/APEX.10.071101
- [130] M. Higashiwaki, K. Sasaki, T. Kamimura, M. Hoi Wong, D. Krishnamurthy, A. Kuramata, T. Masui and S. Yamakoshi, *Depletion-mode* Ga_2O_3 *metal-oxide-semiconductor field-effect transistors on* β - Ga_2O_3 (010) substrates and *temperature dependence of their device characteristics*, Appl. Phys. Lett., 2013, vol. 103, art. 123511. <u>https://doi.org/10.1063/1.4821858</u>
- [131] N.A. Moser, J.P. McCandless, A. Crespo, K.D. Leedy, A.J. Green, E.R. Heller, K.D. Chabak, N. Peixoto and G.H. Jessen, *High pulsed current density* β-Ga₂O₃ MOSFETs verified by an analytical model corrected for interface charge, Appl. Phys. Lett., 2017, vol. 110, no. 14, art. 143505. <u>https://doi.org/10.1063/1.4979789</u>

- [132] N. Moser, J. McCandless, A. Crespo, K. Leedy, A. Green, A. Neal, S. Mou, E. Ahmadi, J. Speck, K. Chabak, N. Peixoto and G. Jessen, Ge-doped β-Ga₂O₃ MOSFETs, IEEE Electron Device Lett., 2017, vol. 38, no. 6, pp. 775–778. https://doi.org/10.1109/LED.2017.2697359
- [133] N.A. Moser, T. Asel, K.J. Liddy, M. Lindquist, N.C. Miller, S. Mou, A. Neal, D.E. Walker, S. Tetlak, K.D. Leedy, G.H. Jessen, A.J. Green and K.D. Chabak, *Pulsed Power Performance of* β-Ga₂O₃MOSFETs at L-Band, IEEE Electron Device Lett., 2020, vol. 41, no. 7, pp. 989–992. <u>https://doi.org/10.1109/LED.2020.2993555</u>
- [134] J.K. Mun, K. Cho, W. Chang, H.-W. Jung and J. Do, 2.32 kV Breakdown Voltage Lateral β-Ga₂O₃ MOSFETs with Source-Connected Field Plate, ECS J. Solid State Sci. Technol., 2019, vol. 8, no. 7, pp. Q3079–Q3082. https://doi.org/10.1149/2.0151907jss
- [135] K.J. Liddy, A.J. Green, N.S. Hendricks, E.R. Heller, N.A. Moser, K.D. Leedy, A. Popp, M.T. Lindquist, S.E. Tetlak, G. Wagner, K.D. Chabak and G.H. Jessen, *Thin channel* β-Ga₂O₃ *MOSFETs with self-aligned refractory metal gates*, Appl. Phys. Express., 2019, vol. 12, no.12, art. 126501. <u>https://doi.org/10.7567/1882-0786/</u> <u>ab4d1c</u>
- [136] M.H. Wong, K. Goto, Y. Morikawa, A. Kuramata, S. Yamakoshi, H. Murakami, Y. Kumagai and M. Higashiwaki, *All-ion-implanted planar-gate current aperture vertical Ga₂O₃ MOSFETs with Mg-doped blocking layer*, Appl. Phys. Express., 2018, vol. 11, no. 6, art. 064102. <u>https://doi.org/10.7567/APEX.11.064102</u>
- [137] M.H. Wong, Y. Nakata, A. Kuramata,
 S. Yamakoshi and M. Higashiwaki,
 Enhancement-mode Ga₂O₃ MOSFETs with Siion-implanted source and drain, Appl. Phys.
 Express., 2017, vol. 10, no. 4, art. 041101.
 https://doi.org/10.7567/APEX.10.041101
- [138] J. Ma, H.J. Cho, J. Heo, S. Kim and G. Yoo, Asymmetric Double-Gate β-Ga₂O₃ Nanomembrane Field-Effect Transistor for Energy-Efficient Power Devices, Adv. Electron. Mater., 2019, vol. 5, no. 6, art. 1800938. <u>https://doi.org/10.1002/aelm.201800938</u>
- [139] K.D. Chabak, J.P. McCandless, N.A. Moser, A.J. Green, K. Mahalingam, A. Crespo, N. Hendricks, B.M. Howe, S.E. Tetlak, K. Leedy, R.C. Fitch, D. Wakimoto, K. Sasaki, A. Kuramata and G.H. Jessen, *Recessed-Gate Enhancement-Mode* β -*Ga*₂*O*₃*MOSFETs*, IEEE Electron Device Lett., 2018, vol. 39, no. 1, pp. 67-70. https://doi.org/10.1109/LED.2017.2779867

- [140] K. Sasaki, Q.T. Thieu, D. Wakimoto,
 Y. Koishikawa, A. Kuramata and S. Yamakoshi, Depletion-mode vertical Ga₂O₃ trench MOSFETs fabricated using Ga₂O₃ homoepitaxial films grown by halide vapor phase epitaxy, Appl. Phys. Express., 2017, vol. 10, no. 12, art. 124201. <u>https://doi.org/10.7567/</u> APEX.10.124201
- [141] J.F. McGlone, Z. Xia, C. Joishi, S. Lodha, S. Rajan, S. Ringel and A.R. Arehart, *Identification of critical buffer traps in Si* δ-doped β-Ga₂O₃ MESFETs, Appl. Phys. Lett., 2019, vol. 115, art. 153501. <u>https://doi.org/10.1063/1.5118250</u>
- [142] A.Y. Polyakov, N.B. Smirnov, I. V. Shchemerov, S. V. Chernykh, S. Oh, S.J. Pearton, F. Ren, A. Kochkova and J. Kim, *Defect States Determining Dynamic Trapping-Detrapping in* β-Ga₂O₃ Field-Effect Transistors, ECS J. Solid State Sci. Technol., 2019, vol. 8, no. 7, pp. Q3013–Q3018. <u>https://doi.org/10.1149/</u> 2.0031907jss
- [143] M.H. Wong, K. Sasaki, A. Kuramata,
 S. Yamakoshi and M. Higashiwaki, *Electron* channel mobility in silicon-doped Ga₂O₃ MOSFETs with a resistive buffer layer, Jpn.
 J. Appl. Phys., 2016, vol. 55, art. 1202B9. https://doi.org/10.7567/JJAP.55.1202B9
- [144] S. Luan, L. Dong and R. Jia, Analysis of the structural, anisotropic elastic and electronic properties of β-Ga₂O₃ with various pressures, J. Cryst. Growth., 2019, vol. 505, pp. 74–81. https://doi.org/10.1016/j.jcrysgro.2018.09.031
- [145] J.E. Stehr, D.M. Hofmann, J. Schörmann, M. Becker, W.M. Chen and I.A. Buyanova, Electron paramagnetic resonance signatures of Co²⁺ and Cu²⁺ in β-Ga₂O₃, Appl. Phys. Lett., 2019, vol. 115, art. 242101. https://doi.org/10.1063/1.5127651
- [146] X. Wang, R. Quhe, Y. Zhi, Z. Liu, Y. Huang, X. Dai, Y. Tang, Z. Wu and W. Tang, *The* electronic structure and magnetic property of the Mn doped β-Ga₂O₃, Superlattices Microstruct., 2019, vol. 125, pp. 330–337. <u>https://doi.org/10.1016/j.spmi.2018.12.001</u>
- [147] J. Shi, H. Liang, X. Xia, Z. Li, Z. Long, H. Zhang and Y. Liu, *Preparation of high-quality* $CuGa_2O_4$ film via annealing process of Cu/β - Ga_2O_3 , J. Mater. Sci., 2019, vol. 54, pp. 11111– 11116. <u>https://doi.org/10.1007/s10853-019-03666-7</u>
- [148] Y.S. Hsieh, C.Y. Li, C.M. Lin, N.F. Wang, J. V. Li and M.P. Houng, *Investigation of metalinsulator-semiconductor diode with alpha-Ga*₂O₃ *insulating layer by liquid phase*

deposition, Thin Solid Films, 2019, vol. 685, pp. 414–419. <u>https://doi.org/10.1016/j.tsf.2019.06.044</u>

- [149] S. Kumar and R. Singh, Nanofunctional gallium oxide (Ga₂O₃) nanowires/nanostructures and their applications in nanodevices, Phys. Status Solidi - Rapid Res. Lett., 2013, vol. 7, no. 10, pp. 781–792. <u>https://doi.org/10.1002/pssr.201307253</u>
- [150] Y.Q. Huang, Y.H. An, Z.P. Wu, D.Y. Guo, Y.S. Zhi, W. Cui, X.L. Zhao and W.H. Tang, *Structural* and photoelectrical properties of Ga₂O₃/SiC/ Al₂O₃ multilayers, J. Alloys Compd., 2017, vol. 717, pp. 8–13. <u>https://doi.org/10.1016/ j.jallcom.2017.05.077</u>
- [151] S. Rafique, L. Han, A.T. Neal, S. Mou, J. Boeckl and H. Zhao, *Towards High-Mobility Heteroepitaxial* β-Ga₂O₃ on Sapphire " Dependence on The Substrate Off-Axis Angle, Phys. Status Solidi Appl. Mater. Sci., 2018, vol. 215, no. 2, art. 1700467. <u>https://doi.org/10.1002/</u> <u>pssa.201700467</u>

- [152] H. Sun, C.G. Torres Castanedo, K. Liu, K.H. Li, W. Guo, R. Lin, X. Liu, J. Li and X. Li, Valence and conduction band offsets of β-Ga₂O₃/AlN heterojunction, Appl. Phys. Lett., 2017, vol. 111, art. 162105. <u>https://doi.org/10.1063/1.5003930</u>
- [153] C.I.M. Rodríguez, M.Á.L. Álvarez, J. de J.F. Rivera, G.G.C. Arízaga and C.R. Michel, α-Ga₂O₃ as a Photocatalyst in the Degradation of Malachite Green, ECS J. Solid State Sci. Technol., 2019, vol. 8, no. 7, pp. Q3180–Q3186. https://doi.org/10.1149/2.0351907jss
- [154] M. Peres, A.J.S. Fernandes, F.J. Oliveira, L.C. Alves, E. Alves, T.S. Monteiro, S. Cardoso, M. Alonso-Orts, E. Nogales, B. Méndez, E.G. Víllora, K. Shimamura and K. Lorenz, *Micro-Opto-Electro-Mechanical Device Based on Flexible* β-*Ga*₂O₃ *Micro-Lamellas*, ECS J. Solid State Sci. Technol., 2019, vol. 8, no. 7, pp. Q3235–Q3241. <u>https://doi.org/10.1149/</u> 2.0441907jss